
1

DREAMPlace 4.0: Timing-driven Placement with
Momentum-based Net Weighting and

Lagrangian-based Refinement
Peiyu Liao, Dawei Guo, Zizheng Guo, Siting Liu, Yibo Lin, Bei Yu

Abstract—Optimizing timing is critical to the design closure
of integrated circuits (IC). However, most existing algorithms for
circuit placement focus on the optimization of wirelength instead
of timing metrics. This paper presents a timing-driven placement
framework. It consists of a global placement stage based on net
weighting with momentum, and a detailed placement stage based
on Lagrangian multipliers. By improving the preconditioners
and timing engines to facilitate net weighting and discrete
local search, we have achieved superior timing improvement on
benchmarks from ICCAD 2015 contest, including worst negative
slack (WNS) and total negative slack (TNS).

I. INTRODUCTION

C IRCUIT placement is an important VLSI design stage.
Placement aims at finding the optimal locations of circuit

components on a given chip layout [2]. Placement is often
formulated as a mathematical optimization problem with ob-
jective functions minimizing the cost of interconnects between
circuit components. In most previous placement frameworks,
the interconnect cost is modeled by the total wirelength of
all nets, which is estimated by half-perimeter wirelength
(HPWL) or other approximations. Besides being only an
approximation, total wirelength pays equal attention to all nets
instead of focusing on timing-critical nets and paths. This is
contrast to timing-driven placement that specifically targets
wires on timing-critical paths which often yields immediate
circuit performance benefits.

Placement can be divided into a global placement stage and
a detailed placement stage, and timing optimization can be
applied to both stages. The goal of timing-driven global place-
ment is to achieve both roughly good worst negative slack
(WNS) and total negative slack (TNS). Later, timing-driven
detailed placement pays more attention to WNS optimization
by perturbing the current placement solution locally around
critical paths. There are two types of timing-driven placement
optimization: net-based and path-based approaches.

In net-based approaches, optimization are done on nets
within the design. These approaches translate timing analysis
feedbacks into changes of net weights and other constraints

The preliminary version has been presented at the IEEE/ACM Proceedings
Design, Automation and Test in Europe (DATE) in 2022 [1]. This work
is supported in part by AI Chip Center for Emerging Smart Systems
(ACCESS) and The Research Grants Council of Hong Kong SAR (Project
No. CUHK14209420). (Corresponding authors: Yibo Lin and Bei Yu)

P. Liao, S. Liu and B. Yu are with the Department of Computer Science
and Engineering, The Chinese University of Hong Kong, Hong Kong SAR.

D. Guo, Z. Guo and Y. Lin are with the School of Integrated Circuits,
Peking University, China.

in order to optimize critical circuit regions. The weights
of nets can be computed statically once before placement
optimization based on either slack [3]–[6] or sensitivity [7]–
[9] statistics. The drawback of such approaches is that the
timing analysis at earlier placement iterations are unreliable
due to frequently-changing cell locations, leading to less
effective and representative net weights. Such drawback is
remedied by updating net weights dynamically across all
placement iterations [3], [10]–[12]. In addition to net weight-
ing, timing analysis results can also be used to limit the
maximum net lengths, which are called net constraint-based
approaches [13]–[17]. The formulation of net constraints
varies from particular placers [2].

Contrast to net-based approaches, path-based approaches
focus on direct optimization of critical timing paths [18]–
[21]. They move cells on selected critical paths to explicitly
reduce the delay of these paths. Such path-based objective is
often formulated as a mathematical programming problem to
optimize, and can usually outperform net-based approaches in
terms of solution quality. However, as the number of paths can
grow near exponentially with the growth of design size, such
path-based approaches are poor in their runtime scalability.

Both the net-based and the path-based approaches have
strengths and weaknesses regarding different targets such as
solution quality and turnaround time, which involve inevitable
trade-off during any timing optimization. Generally, we pre-
fer less constrained approaches with knowledge of different
placement iterations and more runtime scalability to large
designs, especially considering the flexible cell placement
formulation during global placement.

In this paper, we propose a timing-driven placement engine
with momentum-based net weighting in global placement and
Lagrangian-based refinement in detailed placement. The net-
based approach is applied because of its scalability to global
perturbation of cells in global placement. After the timing-
driven global placement, we further integrate a timing-driven
detailed placement procedure to improve the timing quality.
We summarize the major contributions as follows.

• Momentum-based net weighting scheme. The net
weighting scheme is crucial in our timing-driven global
placement algorithm. At each timing iteration, every net
should be assigned a positive weight by incorporating the
current slack evaluation within the existing net criticality.
The net weights will be gradually updated to keep the
timing profile up-to-date by considering the new weights,
computed according to slacks, to be a momentum term,

2

which is analogous to the momentum method that is
widely used in backpropagation algorithm for neural
network training [22].

• Preconditioning for net weighting. The preconditioner
proposed by the original ePlace [23] algorithm only
considers trivial net weights such that every net is equally
treated. Providing that critical nets should have higher net
weights for timing optimization, the numerical stability
may get negatively affected, especially for those cells
incident to critical paths. The preconditioner will be
enhanced and generalized to adapt non-trivial net weights
in placement optimization.

• Lagrangian-based Refinement. After the timing-driven
global placement, a timing-driven detailed placement
inspired from [24] will be performed immediately to
further improve the timing quality. We use a high-quality
black-box timer to evaluate and analyze timing and
iteratively update cell locations.

• Experimental results on the ICCAD2015 contest bench-
mark suites [25] show that we can achieve about 50%
improvements on TNS, and 30% improvements on WNS
on average, compared to the state-of-the-art placer [26]
after global placement and legalization. After, we can
further make roughly 10% improvements on both TNS
and WNS in detailed placement. The timing quality
comparison is listed in TABLE II.

The rest of the paper is structured as follows. Section II
provides some preliminaries including brief foundations of
nonlinear placement, static timing analysis, and timing opti-
mization. Section III presents the descriptions of our timing-
driven global placement algorithms and the detailed analy-
sis. Section IV presents the timing-driven detailed placement
algorithms. After the algorithm sections, Section V demon-
strates the experimental results and some related analysis,
followed by Section VI summarizing the whole paper.

II. PRELIMINARIES

A. Nonlinear Global Placement

In global placement, a circuit is modeled as a directed graph
where nodes represent cells and edges represent interconnects
between cells. A typical circuit graph contains millions of
nodes to be placed on the chip layout. We let N = (V,E)
denote this graph where V denotes the set of cells and E
denotes the set of interconnects, i.e., nets. Placement engines
try to assign two location vectors (x,y) in Rn corresponding
to all n cells to minimize the total wirelength of nets, denoted
as W (x,y). With net weights applied, the weighted sum of
wirelengths can be formulated as

min
x,y

∑
e∈E

weW (e;x,y), (1)

where we denotes the weight of net e ∈ E. To ease the
optimization of wirelength, modern placement engines adopt
smoothed approximations to the half-perimeter wirelength
(HPWL) model W (e;x,y). Smoothed approximations pro-
vide gradient information to cell movements which is espe-
cially useful in nonlinear placement frameworks which rely

on the differentiability of objective functions. One commonly-
used smoothed approximation of HPWL is called weighted-
average (WA) equations [27], [28] as follows,

W̃x(e, γ;x,y) =

∑
i∈e xie

xi
γ∑

i∈e e
xi
γ

−
∑

i∈e xie
− xi

γ∑
i∈e e

− xi
γ

,

W̃ (e, γ;x,y) = W̃x(e, γ;x,y) + W̃y(e, γ;x,y),

(2)

In Equation (2), W̃x(e, γ;x,y), W̃y(e, γ;x,y) denote net
wirelengths across horizontal and vertical directions, respec-
tively, and the hyperparameter γ controls the approximation
precision. This equation is a drop-in replacement for the
wirelength model used throughout the rest of this paper.
Finally, the non-linear placement objective is formulated as

min
x,y

{∑
e∈E

weW (e;x,y) + λD(x,y)

}
, (3)

where D(·, ·) denotes the density penalty to encourage cell
spreading and λ denotes the penalty multiplier.

To fully leverage the advantages of gradient-based numeri-
cal optimization methods, the objective in Equation (3) should
be everywhere differentiable and its gradient should be feasi-
ble to compute numerically. The wirelength model W (e;x,y)
is a nonlinear approximation, so optimizing Equation (3) is
known as nonlinear global placement.

B. Static Timing Analysis

The basis of a successful timing-driven placement lies in
fast and accurate timing computation through static timing
analysis (STA). STA evaluates the delay-annotated circuit tim-
ing graph under worst-case and best-case scenarios, and then
compute its setup and hold timing performance. During this
process, the signal arrival time and constraints are propagated
on the graph through logic paths [29].

Specifically, the delay-annotated timing graph is directed
and acyclic, with each node denoting a circuit pin and
each edge denoting a directed connection between circuit
pins where signal can pass through. The signal propagation
involves both a forward propagation and a backward propaga-
tion process, respectively computing arrival times and required
arrival times of pins. For any pin p with arrival time denoted
as tat(p) and required arrival time denoted as trat(p), we can
define its slack as the difference between them,

s(p) = trat(p)− tat(p). (4)

Slack is a critical and widely-used indicator of timing quality
around every pin evaluated. The timing performance of a
whole placement solution is an ensemble of slacks on end-
point pins. By picking the smallest negative slack values, we
get the most commonly used worst negative slack (WNS),

swns = min
t∈Pend

s(t), (5)

here Pend denotes the set of endpoint pins including flip-
flop (FF) inputs and output ports, and swns denotes the WNS
value. We assume at least 1 pin with negative slack value,

3

i.e., ∃t ∈ Pend s.t. s(t) < 0, which means there exists timing
violations in current placement iteration. Apart from WNS,
total negative slack (TNS) [17] is another well-known timing
objective which sums all negative endpoint slacks instead,

stns = −
∑
t∈Pend

s(t)− =
∑

t∈Pend,s(t)<0

s(t). (6)

C. Timing Optimization

Timing-driven placement aims at improving the TNS and
WNS of the underlying design. While both metrics depict
the timing quality, they pay attention to different aspects of
the circuit timing behavior. WNS cares about the single most
critical signal path by definition, whereas TNS involves the
critical paths at all timing endpoints, possibly taking tens
of thousands of paths into consideration that expands to the
whole circuit topology. As a result, TNS incorporates a more
global view of timing optimization opportunities which turns
out to be useful in timing-driven global placement, whereas
WNS is more emphasized during detailed placement.

A complete timing-driven placement formulation with both
objectives and constraints can be presented as following,

max s(x,y)
s.t. ρb(x,y) ≤ ρt,∀b ∈ B.

(7)

In Equation (7), the objective s(x,y) is a slack function that
we need to maximize, i.e., minimizing the absolute value of
slacks. It can be either WNS or TNS, or the combination
of them. The constraints are related to cell density which is
sampled from the m×m planar grids (i.e., bins) denoted as
B on the circuit layout. In each bin b ∈ B, ρb(x,y) and
ρt denote the current density and the target density, respec-
tively. To encourage cell spreading, we try to stop density
overflows. The timing-oriented objective s(x,y) replaces the
total wirelength objective used in previous wirelength-driven
analytical placement algorithms while leaving cell constraints
untouched. Contrary to the wirelength functions with closed-
form analytical representations, slack metrics hardly incorpo-
rate explicit forms. This leads to our choice of an indirect
timing optimization scheme by net weighting.

III. TIMING-DRIVEN GLOBAL PLACEMENT

The overall flow of the proposed placement framework
including both global placement and detailed placement is
illustrated in Fig. 1 in detail. Tasks of placement placement
are described in red boxes, while tasks of detailed placement
are in cyan boxes. In this section, we focus on the timing-
driven global placement.

At the global placement stage, we expect to integrate static
timing analysis into the iterations of cell location updates
during the gradient-based optimization so that the placement
solution can be optimized in terms of timing. More specifi-
cally, we expect the timing analysis tool to give us feedback
about how good the current placement is, which paths have an
intensive impact in terms of timing, and how such information
can affect the cell locations during the placement. We have to
determine whether the timing analysis should be performed
at each optimization step compared to modern gradient-based

analytical placers. If the current iteration is regular, we skip
the timing optimization block and check convergence criteria
directly. Otherwise, the current iteration is determined to be
a timing iteration, which launches the net weighting process.

The timing optimization in global placement consists of
three consecutive steps: RC tree construction, static timing
analysis and net weighting.

A. RC Tree Construction

Constructing RC trees is a crucial step required by our timer
to perform timing analysis. At the placement stage, we only
have cell locations without routing information, so we must
provide a policy to leverage coordinates and model timing
propagation. More specifically, for each net, we are supposed
to construct an RC tree that roots from its driving pin and
connects each sink pin.

Additionally, RC trees should be re-constructed for all nets
at every timing iteration, as the cell locations will change in
every backward step. Since it is computationally expensive
to construct RC trees at every gradient-based iteration in
placement optimization, two adjacent timing iterations should
not be too close. Therefore, the pin distribution of the same net
may vary significantly in two timing iterations, which forces
us to re-construct RC trees for reliability.

Given a possibly illegal placement solution, the pin loca-
tions of all nets are provided. Each time we perform the timing
analysis, the pin locations are considered fixed, until the next
cell location update iteration.

For each net, we start with the pins it connects. A
FLUTE [30] call will be performed to construct the rectilinear
Steiner minimal tree of this net. The Steiner tree generally
reflects the internal timing propagation inside the timer we
use. With the help of Steiner trees, we can roughly model
the routing solution by inserting Steiner points. For any
driving-sink pair in a net, there exists a unique path in the
corresponding Steiner tree, which provides hints to calculate
inter-connect net delays.

Considering that the placement solutions will only affect the
inter-connect timing modeling, we can apply Elmore’s delay
model [31] which is sufficient for timing-driven placement.
We illustrate the RC tree construction process from a simple
4-pin net in Fig. 2(a) and Fig. 2(b). The generated Steiner
tree is visualized in Fig. 2(a). In contrast, the abstract RC
tree hierarchy is described in Fig. 2(b).

In Fig. 2(a), we have a simple 4-pin net that connects pins
p1, p2, p3 and p4, where p1 is the driving pin. The FLUTE [30]
will give us a Steiner tree rooting from p1, connecting sinks
with two Steiner points s1 and s2 added. The Steiner nodes
are inner nodes of the RC tree in Fig. 2(b), while a pin is
either a root or a leaf.

To build RC information from inter-connections, we require
the resistance value per unit length r′ and the capacitance
value per unit length c′ pre-determined for the given design.
Each line segment with length l contributes a resistance value
r′l and a capacitance value c′l.

4

Legalization

Update Cell Position

Wirelength
Gradient
∇W (x,y)

Density
Gradient
∇D(x,y)

Placement Optimization

Timing
Iteration?

Ë

RC Tree
Construction

Static Timing
Analysis

Net Weight
Update

Timing Optimization

Converge?
é Ë

é

Static Timing
Analysis

Multiplier λ
Update

Solving LDP

Discrete Local
Search

Overlap
Removal

Solving LRS

Reach Max
Iteration?

é

Ë

Global Placement Detailed Placement

Initial Position

Optimized Position

Fig. 1 The overall flow of placement including both global placement and detailed placement with timing optimization. Tasks
of placement placement are described in red boxes, while tasks of detailed placement are in cyan boxes.

p1 s1

s2

p2

p3

p4

(a) A Steiner tree example

p1 s1

p3

s2

p2

p4

(b) The corresponding RC tree

Fig. 2 A 4-pin net example of a Steiner tree and its corre-
sponding RC tree constructed for net delay calculation.

p1
s1 s2

p2
p3

p4
Cp1s1

2

Cp1s1
2

Rp1s1

Cs1s2
2

Cs1s2
2

Rs1s2

C2

Cs2p2
2

Cs2p2
2

Rs2p2C3

Cs1p3
2

Cs1p3
2

Rs1p3

Cs2p4
2

Cs2p4
2

Rs2p4 C4

Fig. 3 The Elmore delay model for the above 4-pin net
example.

B. Static Timing Analysis

The details can be enriched in Fig. 2(b) by adding several
abstract resistors and capacitors for edge segments in the RC
tree, illustrated in Fig. 3. In our framework, Elmore’s delay
model [31] is applied to approximate actual delays. More
specifically, we use Π−model to break wires into RC sections.
After we fill the RC information into the RC tree initialized
by the timer, we then naturally proceed to the static timing
analysis.

The resistance and capacitance values can be directly
computed according to the Manhattan distances given pin

coordinates. Note that cell overlaps exist in global placement,
so the coarse-grained inter-connect timing model is enough
to catch the general criticality information.

The static timing analysis is crucial to obtain the timing
profile at any timing point. It is performed at every timing
iteration so that we can keep the timing profile up-to-date.
Once the slack values are correctly calculated, we then
smoothly proceed to the net weighting part, which updates
the net weights of all nets.

C. Momentum-based Net Weighting

Every net is assigned a weight in the objective function
of wirelength-driven placement. Some prior knowledge of net
wirelength contribution can be a hint fed into the wirelength-
driven placer by adjusting net weights. A net with a higher
weight will be more sensitive to the updates of cell locations,
as a perturbation to its total wirelength will lead to a greater
impact on the objective we are optimizing. The optimizer will
implicitly tend to place cells such that the bounding boxes of
nets with higher weights can be smaller.

Critical nets have a more pronounced impact on the final
timing performance. Reducing the HPWL of a critical net will
lead to a more significant gain in timing. Without any doubt,
critical nets should be reasonably assigned higher weights to
guide the placer to place cells incident to them closer.

Net Criticality. We define criticality value in our place-
ment database as a guide to update net weights. The higher
criticality value of a net, the more critical it will be in timing
analysis. Therefore, we should assign higher criticality values
to those critical nets according the timing analysis report
at each timing iteration. For a specific net e, let ce and
swns denote its criticality value and the worst negative slack
(WNS) of the circuit design, respectively. The WNS swns

5

directly comes from the timing report. On the other hand, the
criticality value c

(m)
e of net e at the m-th timing iteration is

calculated iteratively based on the historical value c
(m−1)
e and

the momentum of the current timing iteration. The momentum
of criticality value of a net e is defined as

cmom,e =


0, if swns ≥ 0,(

se

swns

)+

, otherwise,
(8)

where se is the net slack of e. In Equation (8), function x+ =
max{x, 0} is the positive part of any real number x ∈ R. It
is also known as the rectified linear unit (ReLU) activation
function in neural network training.

If the WNS swns is non-negative, the net weights will
all remain unchanged. Otherwise, swns is negative, and the
criticality value of net e is defined as the positive part of the
slack ratio se

swns
, which means that only nets with negative

slacks will be considered. If a net e has a negative slack
se < 0, its criticality momentum will be set to the ratio
se
swns

= |se|
|swns| . For net e, The higher the absolute slack value

|se| we compute, the higher criticality momentum cmom,e it
will have according to Equation (8).

Intuitively, the net criticality should indicate the probability
of net e to be critical. Since the timer will report different
timing-critical paths at each iteration, we should also update
the criticality values iteratively. A critical net may be related
to multiple critical paths, and different nets may have different
negative slacks. Hence, the criticality update policy should be
strongly correlated to the negative slacks. Nets with higher
absolute slack values are thought to be more sensitive to
timing metrics, so we are supposed to assign higher net
weights to them accordingly so that the placer will try to
shrink its bounding box.

Consider a specific net e. Define its criticality value at the
m-th iteration as c

(m)
e . From Equation (8), we know that its

net slack s
(m)
e and the WNS s

(m)
wns can be calculated at each

timing iteration by static timing analysis. Then we obtain
its momentum criticality value c

(m)
mom,e of net e at the m-th

iteration, which corresponds to the criticality updates.
Net weighting Scheme. We introduce a momentum-based

net weighting scheme. Consider a specific net e in the design.
The net weight of e is always positive (a net with zero weight
is ignored), so we decide to take its logarithm to discuss. Let
w̃

(m)
e = logw

(m)
e and ∆w̃

(m)
e be the logarithmic net weight of

we and its increment at the m-th timing iteration, respectively.

w̃(m+1)
e = w̃(m)

e +∆w̃(m)
e . (9)

Note that the base of the logarithm can be customized.
In fact, the addition operation in Equation (9) is equivalent
to a multiplication without the logarithm. This way, we can
guarantee the positiveness of the net weights.

Considering that the criticality momentum at different tim-
ing iterations are independent of each other, we expect the net
weight w(m)

e to be emphasized by its criticality c
(m)
e , which

accumulates the current criticality momentum. For any integer

w̃(m−1)

w̃(m)

momentum stepvmom

history stepvhis

actual step
w̃(m+1)

Fig. 4 The visualization of a simple example illustrating the
mechanism of how the momentum vectors will affect the
actual step.

m ≥ 0, the increment and the logarithmic criticality can be
modeled by

∆w̃(m)
e = c̃(m)

e ,

∆w̃(m+1)
e = α∆w̃(m)

e + ηc̃(m)
mom,e,

(10)

where the logarithmic criticality and its momentum are de-
fined as

c̃(m)
e = log(1 + c(m)

e),

c̃(m)
mom,e = log(1 + c(m)

mom,e).
(11)

The decay coefficient α is a hyperparameter within [0, 1]. η >
0 is also a positive hyperparameter indicating the contribution
of the momentum term in the new weight increment. The term
∆w̃

(m)
e can be considered as the velocity, from Equation (9).

The scheme in Equations (9) and (10) is inspired by
the momentum-based gradient descent algorithm on back-
propagation during neural network training. In a typical
backpropagation of training when optimizing f(w) where
w represents the weights, the momentum term should be
−∇f so that the actual gradient increment ∆w value can be
guided while remembering the history update at each iteration.
More specifically, one may use α∆w(m)−η∇f as the actual
increment in the next iteration, where α and η are interpreted
as the decay factor and the step size, respectively.

In net weighting, the net criticality may be unstable during
global placement. Therefore, here we apply the momentum
step to the update of the criticality values and the net weights
to smooth the increment of logarithmic net weights. If a net e
has a positive criticality ce > 0, its weight should be increased
according to the criticality magnitude. Besides, if a net is
reported to be critical at most timing iterations, it may have
a large net weight as we will keep increasing at most timing
iterations. The weight differences are acceptable as long as
no value overflow is reported.

6

We would like to adopt the notations in matrix calculus
where we use boldface to represent vectors, then the scheme
described in Equations (9) and (10) can be reformulated as

∆w̃(m+1) = α∆w̃(m) + ηc̃(m)
mom, (12)

where w̃(m) , ∆w̃(m), and c̃
(m)
mom indicate the logarithmic net

weights, their increments, and the transformed momentum
vector calculated by Equation (8), respectively, at the m-th
timing iteration. The update rule Equation (12) is similar
to the aforementioned formula α∆w(m) − η∇f . All vectors
in Equation (12) have the same size that is exactly the total
number of nets in the design. A simple example illustrating
the mechanism of momentum-based net weighting works is
shown in Fig. 4.

If the criticality momentum c̃
(m)
mom,e of net e has a very

small magnitude in the late period of global placement, the
net weight increment ∆w̃

(m)
e will approximately decay by the

factor α with the increment of iteration m, and consequently
the net weight w

(m)
e will stabilize gradually. Therefore, we

can keep highlighting nets remaining critical during global
placement according to Equation (12). Here, the parameter η
is simply determined by 1−α to make Equation (12) a linear
combination.

Different from [10] and other similar dynamic net weight-
ing schemes, all nets are considered instead of those only on
critical paths. We do not analyze and extract the critical paths
explicitly in global placement. Instead, the nets with more
negative slack values are thought to be critical as they will be
assigned higher criticality values according to Equation (8).

D. Preconditioning

Preconditioning is very critical to numerical optimization.
A conventional preconditioner usually aims at solving the
inverse matrix of the Hessian matrix H−1

f for unconstrained
optimization min f(x), so as to implement the exact Newton
direction −H−1

f ∇f . In real applications, the Hessian matrix
is never computed explicitly due to the huge computational
overhead. Therefore, Hessian-free methods are preferred in
most of numerical optimization techniques.

In global placement problems, the industrial designs are
very likely to contain millions of instances, so it is impossible
to calculate the exact Hessian matrix at each global placement
iteration. The ePlace [23] preconditioner simply ignores non-
diagonal entries ∂2f

∂xj∂xj
, which is actually nonzero in real

applications. Eliminating all non-diagonal entries makes the
Hessian transformation −H−1

f ∇f an element-wise scaling on
the gradient ∇f .

The objective function f is set to Equation (3) by default.
Without loss of generality, we only consider the horizontal
cell locations x ∈ Rn here. The i-th diagonal entry of the
Hessian matrix H−1

f is given by

∂2f

∂x2
i

=
∑
e∈E

we
∂2W (e;x,y)

∂x2
i

+ λ
∂2D(x,y)

∂x2
i

, (13)

where we is the net weight of net e, and D is the density
penalty of the circuit given the current placement.

In the ePlace [23] algorithm, the second-order derivative
term ∂2

∂x2
i
W (e;x,y) is computationally expensive due to the

complicated form of the weighted-average model [27]. We
also adopt this approximation. More specifically, the second
derivatives will be binary and only when node vi ∈ V is
incident to net e ∈ E will the term be set to 1. This rule of
thumb will approximate the wirelength term in Equation (13)
as ∑

e∈E

we
∂2W (e;x,y)

∂x2
i

≈
∑
e∈Ei

we, (14)

where Ei is the net subset incident to vi ∈ V . Note that
the net weighting scheme only affect the inter-connects and
the wirelength term, so we are allowed to follow the same
computational approximation as [23] for preconditioning.

∂2D(x,y)

∂x2
i

= qi
∂2ϕi(x,y)

∂x2
i

≈ qi, (15)

where qi is the quantity of electrical charge of the node
vi ∈ V . This coarse-grained approximation can save huge
computational overhead. The approximate preconditioning
matrix on the horizontal direction will be

H̃fx,x = diag

(∑
e∈E1

we + λq1, · · · ,
∑
e∈En

we + λqn

)
.

(16)
If the net weights are trivial, i.e., every net has a weight
of 1,

∑
e∈Ei

we will be degraded to |Ei| which represents
the total number of nets incident to vi. Together with the
vertical direction, the preconditioned gradient vector will be
∇fprecond = H̃−1

f ∇f .

IV. TIMING-DRIVEN DETAILED PLACEMENT

Global placement provides a roughly good solution from
scratch. Compared to global placement with a clear form of
numerical optimization, detailed placement refines standard
cell locations locally to further improve specific objectives.
The normal wirelength-driven detailed placement adopts mul-
tiple discrete methods to further improve circuit wirelength. In
the timing-driven detailed placement, the timing metrics be-
come the major objective. In this section, we further improve
the negative slacks via iterative local search.

We use N = (V,E) to represent the set of net list where
V is the set of standard cells. Let VPI and VPO be the set
of primary inputs and primary outputs. For any standard cell
(node) vi ∈ V , we use aLi = tLat(pi) and aEi = tEat (pi) to
denote the late and early arrival times of the output pi of vi.
Similarly, we use rLi = tLrat(pi) and rEi = tErat(pi) to denote
the late and early required arrival times of the output pi of
vi. In addition, let dLij and dEij denote the late and early delay
values from node vi’s output to node vj’s output, where vi :
vi ∈ Fj , i.e., node vi is a fan-in of vj ∈ V . In timing-driven
detailed placement, timing objectives should be considered
more directly and explicitly, so that we have more accurate
estimation and are able to perform precise refinement.

7

The general timing-driven detailed placement can be for-
mulated as follows.

min −
∑

j:vj∈VPO

ŝEj −
∑

j:vj∈VPO

ŝLj

s.t. ŝEj ≤ 0, ŝLj ≤ 0, ∀j : vj ∈ VPO

aEj − rEj ≥ ŝEj , aLj − rLj ≤ −ŝLj , ∀j : vj ∈ VPO

aEi + dEij ≥ aEj , aLi + dLij ≤ aLj , ∀(i, j) : vi ∈ Fj

displacement & legality constraints.
(17)

Here notation ŝ = min{s, 0} simply means negative slacks.
Note that Fj should be empty for vj ∈ VPI, so the primary
inputs are actually not included in the above constraints. The
formulation in Equation (17) from [24] aims at optimizing
the TNS objective, which is more intuitive than WNS. The
latter one is much more sensitive, and thus much harder to
optimize. However, a success of improving TNS will usually
also lead to the benefit of WNS.

The formulation in Equation (17) is complicated as we
have introduced a lot of auxiliary variables s,a, r defined
for valid nodes vj ∈ V . There are various applications in
gate sizing facing such a kind of optimization problem with
complicated constraints [32], [33]. A most widely adopted
strategy is to relax the timing constraints into objectives
and solve it via Lagrangian dual. More specifically, each
constraint in Equation (17) is assigned a Lagrangian multiplier
to formulate the objective L(x,y, s,a, r,λ) (simplified as L
in the following sections),

L = −
∑

j:vj∈VPO

(1− λ̂E
j)ŝ

E
j −

∑
j:vj∈VPO

(1− λ̂L
j)ŝ

L
j

+
∑

j:vj∈VPO

λE
j (ŝ

E
j − aEj + rEj) +

∑
j:vj∈VPO

λL
j (ŝ

L
j − rLj + aLj)

+
∑

j:vj∈V

∑
i:vi∈Fj

(
λE
ij(a

E
j − aEi − dEij) + λL

ij(a
L
i − aLj + dLij)

)
.

(18)

The typical Lagrangian dual is to solve maxλ≥0 minx,y L.
However, the complicated formulation prevents us from solv-
ing it feasibly. Note that the auxiliary variables appear in
multiple terms. We rearrange the summation order and get

L =
∑

j:vj∈VPO

(λE
j + λ̂E

j − 1)ŝEj +
∑

j:vj∈VPO

(λL
j + λ̂L

j − 1)ŝLj

+
∑

j:vj∈V

(
fL
j (λ)a

L
j − fE

j (λ)aEj
)
+

∑
j:vj∈VPO

(
λE
j r

E
j − λL

j r
L
j

)
+
∑

j:vj∈V

∑
i:vi∈Fj

(
λL
ijd

L
ij − λE

ijd
E
ij

)
, (19)

where the helper function fL
j (λ) for index j such that vj ∈ V

is defined as

fL
j (λ) =


λL
j −

∑
i:vi∈Fj

λL
ij , if vj ∈ VPO,∑

k:j∈Fk

λL
jk −

∑
i:vi∈Fj

λL
ij , otherwise,

(20)

and fE
j (λ) is defined similarly.

For any auxiliary variable ŝEj , ŝ
L
j , a

E
j , a

L
j , r

E
j , r

L
j , where

vj ∈ V , the corresponding term in Equation (19) is linear.
The delay values dEij and dLij are considered to be completely
determined by a placement solution (x,y).

Equation (19) is thought to be continuous but indifferen-
tiable. Consider the Karush-Kuhn-Tucker (KKT) optimality
conditions of Equation (19). It is not difficult to obtain the
complementary slackness condition λE

j + λ̂E
j = λL

j + λ̂L
j = 1

for any vj ∈ V when taking partial derivatives with respect to
the auxiliary variables ŝEj , ŝ

L
j for every valid j. Additionally,

we have the flow conservation [34] when taking partial
derivatives with respect to aEj , a

L
j , r

E
j , r

L
j for every valid j:∑

i:vi∈Fj

λE
ij =

∑
k:j∈Fk

λE
jk, ∀j : vj ∈ V \(VPI ∪ VPO),∑

i:vi∈Fj

λL
ij =

∑
k:j∈Fk

λL
jk, ∀j : vj ∈ V \(VPI ∪ VPO),

λL
j =

∑
i:vi∈Fj

λL
ij , ∀j : vj ∈ VPO,

λE
j =

∑
i:vi∈Fj

λE
ij , ∀j : vj ∈ VPO.

(21)

Any local minimum of Equation (17) must satisfy the above
flow conservation in Equation (21). Now that any local opti-
mum (x∗,y∗, s∗,a∗, r∗,λ∗) must admit a multiplier variable
λ∗ satisfying Equation (21), we directly reduce the solution
space in subproblem minx,y L by combining Equation (19)
and Equation (21) as the aforementioned auxiliary variables
and their corresponding multipliers can be reasonably can-
celled out.

L(x,y,λ) =
∑

j:vj∈VPO

(
λE
j r

E
j − λL

j r
L
j

)
+
∑

j:vj∈V

∑
i:vi∈Fj

(
λL
ijd

L
ij − λE

ijd
E
ij

)
. (22)

Equation (18) and Equation (22) are not generally equiv-
alent. However, they will be equivalent given a fixed λ
satisfying the flow conservation in Equation (21). Com-
pared to the original one, there are much less variables
in Equation (22) as the auxiliary variables are cancelled
out. Hence, the new Lagrangian dual program should be
solving maxλ∈Λ minx,y L(x,y,λ) where set Λ is defined as
Λ = {λ ≥ 0 : λ satisfies Equation (21)}.

Note that the first term
∑

j:vj∈VPO

(
λE
j r

E
j − λL

j r
L
j

)
in Equa-

tion (22) will not be affected by the movable cells, as the
summation is taken over weighted required arrival time values
on primary outputs which should be determined by the timing
constraints. In other words, we can naturally ignore the first
term and focus on the second term. Therefore, we must have

L∗(λ) =
∑

j:vj∈VPO

(
λE
j r

E
j − λL

j r
L
j

)
+min

x,y

∑
j:vj∈V

∑
i:vi∈Fj

(
λL
ijd

L
ij − λE

ijd
E
ij

)
. (23)

Now, the target is to solve maxλ∈Λ L∗(λ). Typically, a
numerical method should solve L∗(λ) and maxλ∈Λ L∗(λ)
separately. The former problem is called the Lagrangian

8

relaxation subproblem (LRS) and the latter one is called
the Lagrangian dual problem (LDP) in [24]. Unfortunately,
we are unable to numerically find the optimal or suboptimal
solutions of LRS or LDP like what we have shown in global
placement. The general heuristic flow includes:

i) a discrete local search to approximately solve LRS;
ii) an overlap removal step to remove cell overlap;

iii) an overall multiplier update according to STA results.
We will introduce the three steps in detail one by one in

the following subsections.

A. Discrete Local Search

Unlike the timing model applied in [24], we generally
obtain the delay values in Equation (23) from the STA tool
black box. Any timing analysis engine can be integrated into
the local search to solve LRS problem.

Local Cost. From Equation (23), the discrete local search
tries to minimize the second term of Equation (22) as a
subproblem∑

j:vj∈V

∑
i:vi∈Fj

(
λL
ijd

L
ij − λE

ijd
E
ij

)
=

∑
(i,j):vi∈Fj

(
λL
ijd

L
ij − λE

ijd
E
ij

)
=

1

2

∑
j:vj∈V

cj(x,y,λ), (24)

where the summation is taken over all pairs (i, j) that vi ∈ Fj ,
and the cost cj(x,y,λ) (simplified as cj) of vj is defined as

cj =
∑

i:vi∈Fj

(
λL
ijd

L
ij − λE

ijd
E
ij

)
+
∑

k:j∈Fk

(
λL
jkd

L
jk − λE

jkd
E
jk

)
.

(25)
In Equation (25) we consider both the fanins and fanouts of vj .
Therefore, each valid index pair (i, j) will be counted twice,
and that is why we need a 1

2 factor in Equation (24). However,
generally minimize it from a global perspective is intractable.
A feasible workaround is to separate the global optimization
minx,y

∑
j:vj∈V cj into mini-problems minxj ,yj

cj for every
movable node vj . In this way, we move the movable nodes
one by one and solve the subproblem discretely from a local
perspective.

In the local search step, we fix the multipliers λ. When
moving a node vj , the delay values dLij , d

E
ij , d

L
jk, d

E
jk including

interconnect delays and the cell delays for valid indices
i, k will change accordingly, leading to the update of cost
cj . Since the relationship between cell location (xj , yj) and
cj is indirect, we enumerate all locations inside a window
surrounding the current location (xj , yj) to find the best one
(x∗

j , y
∗
j) with the minimum cost c∗j . Fig. 5 shows a simple

example of the local search algorithm.
Delay Estimation. In each iteration of our detailed place-

ment algorithm, the location of one node vj is updated, and
the circuit timing parameters such as dLij , d

E
ij , d

L
jk, and dEjk

are updated correspondingly. As there are a lot of iterations,
the timing update must be done efficiently. The timing update
consists of two tasks: net parasitics update and timing prop-
agation update. Both tasks incur a long runtime in current
STA engines, which pose difficulty on fast and agile detailed
placement flow.

To solve the aforementioned problems, we propose a fast
timing update flow to assist our detailed placement iterations.
The flow includes two techniques: local net estimation and
incremental timing update. The key observation is that the
movement of one node vj only affects the nets that are directly
connected to it. For example, in Fig. 5, the upstream nets
e1, e2 ∈ E and the downstream net e3 ∈ E will be affected
when moving vj ∈ V . Thus, we can approximate the timing
impacts by only updating the timing in a local region around
the moved node.

The movement of vj affects the parasitics of the surround-
ing nets, leading to updates on Elmore delay parameters
such as impulse values, load capacitances, and delays. As the
Steiner tree generation is expensive, we estimate the change to
these values instead of rebuilding the whole routing solution.
For an affected net e, we denote its driver pin by pe at
coordinate v(pe;xj , yj). A movement of vj from (xj , yj) to
(x′

j , y
′
j) can change the coordinate of pe. For every driver or

sink pin p in net e locating at v(p;xj , yj), we define its scale
ratio r(p;x′

j , y
′
j) as

r(p;x′
j , y

′
j) =


W (e;x′

j , y
′
j)

W (e;xj , yj)
, if p is pe,

∥v(p;x′
j , y

′
j)− v(pe;x

′
j , y

′
j)∥1

∥v(p;xj , yj)− v(pe;xj , yj)∥1
, otherwise.

(26)
In Equation (26), W (·) is the wirelength of e. More specifi-
cally, the ratio defined above indicates the scale factor of the
driving net wirelength if p is a driver, and otherwise the scale
factor of the Manhattan distance between sink p and its driver
pe after the above cell movement.

After directly scaling the load capacity, impulse, and the
net delay by the factor defined in Equation (26), we have
estimated the net parasitics affected by the local cell move-
ment. We then perform an incremental 2-hop forward timing
propagation on all affected nets to obtain the estimated values
of all dLij , d

E
ij , d

L
jk, and dEjk. In this way, we avoid the time-

consuming full routing and timing update. The proposed
estimation is effective as long as the cell movement is small,
which is the case in our detailed placement flow.

Local Search Algorithm. The order of moving nodes may
heavily affect the placement solution, so a better strategy is
to search by the reverse topological order [24]. Note that the
delay values dEjk and dLjk contain the arc delay of cell vj itself.
All delay values are provided by the timer after a complete
static timing analysis. The detailed algorithm of the modified
discrete local search algorithm is described in Algorithm 1.

As shown in Algorithm 1, we will find the best location of
vj in the reverse topological order of every selected critical
path. Consider the sub-procedure of moving vj . Assume that
there are two fanins and two fanouts shown in Fig. 5. We will
retrieve delay values di1j , di2j , djk1

and djk2
from the timer

to calculate the cost of the current location (xj , yj) according
to Equation (25). Note that the arc delay of vj will be included
in di1j and di2j . We will construct a local search window
which is the cyan box in Fig. 5. For example, the dashed lines
visualize the top left and the bottom right candidate locations
of vj in the 7×3 search window. The location within the

9

Algorithm 1 LOCAL SEARCH ALGORITHM

Require: The Lagrangian multipliers λE ,λL for early and
late timing constraints both, the total number of most
critical paths k.

1: Use timer to perform static timing analysis.
2: Extract top k critical paths p1, · · · , pk, where pi stands

for the i-th most critical path;
3: Set the path index i = 1;
4: while i ≤ k do
5: for movable vj ∈ pi in the reverse topological order

do
6: Initialize the best cost c∗j ← +∞;
7: Initialize the best cell location (x∗

j , y
∗
j) to be the

current cell location;
8: for each candidate location (xj , yj) do
9: Estimate delay values dij for any i such that

vi ∈ Fj and djk for any k such that j ∈ Fk;
10: Calculate cost cj by Equation (25) according

to the delay values obtained above;
11: if cj < c∗j then
12: Update c∗j ← cj and (x∗

j , y
∗
j)← (xj , yj);

13: end if
14: end for
15: Place node vj to the best cell location (x∗

j , y
∗
j);

16: end for
17: end while
18: return the refined cell locations (x∗,y∗);

search window

vj

vi1

vi2

vk1

vk2

e1

e2

e3

Fig. 5 A simple example illustrating the discrete local search
algorithm. The delay values that should be considered when
moving cell vj are marked in cyan. All candidate locations of
vj are included in the search window (the cyan box).

search window with the lowest cost will be selected as the
best location (x∗

j , y
∗
j).

B. Overlap Removal

Since cell overlap may still exist after the local search, we
should perform overlap removal to eliminate illegality. This
procedure is a mini-legalization, as legality constraints except
cell overlap must be guaranteed.

Inspired by [24], we introduce a fast algorithm to remove
cell overlaps while preserving the timing quality given by the
discrete local search solution.

The main idea is to iteratively search for the nearest legal
location for each cell, reducing the displacement from their

previously found locations. In each iteration, we add the
candidate locations in the four directions to the search space
and find the closest one by managing a min-priority queue
sorted by Manhattan distance from their original location.

It was noted that in some circumstances, nodes will in-
evitably have large displacement when the region around
them is dense. In these cases, we prioritize those nodes that
be more critical to the timing information to be unaffected.
Therefore, unlike [24] which sorted nodes by their center
horizontal coordinates, we sort the nodes according to their
slacks. Those with large negative slack values are considered
as being critical to timing improvement and we will have them
fixed first.

Algorithm 2 OVERLAP REMOVAL ALGORITHM

Require: The slacks of movable nodes, the initialized row
structures R.

1: Sort movable nodes according to slack values;
2: for fixed macro M do
3: Insert M in the row structure;
4: end for
5: for movable vj ∈ V do
6: Initialize the min-priority-queue q with current node

location (xj , yj);
7: while q is not empty do (x∗

j , y
∗
j)

8: if (x∗
j , y

∗
j) causes overlap then

9: Insert locations above, below, left and right of
(x∗

j , y
∗
j) in q;

10: else
11: Place node vj to the location (x∗

j , y
∗
j);

12: Insert (x∗
j , y

∗
j) in the row structure;

13: Clear q;
14: end if
15: end while
16: end for
17: return the overlap-free solution;

Algorithm 2 shows the detailed procedure for removing
overlaps. To reduce the time required by the algorithm,
we construct a segment tree, a kind of binary tree storing
information of intervals for each row to query or insert the
overlap rapidly.

C. Multiplier Update

The values of multipliers are extremely important in the
discrete local search process. Therefore, an efficient update
strategy can lead to effective timing improvement. The mul-
tiplier update solves the LDP subproblem maxλ∈Λ L∗(λ).
Unfortunately, this optimization problem is intractable to
solve as we have both the dual feasibility λ ≥ 0 and the
flow conservation Equation (21) as constraints. A possible
workaround should be like the conventional projected gradient
descent. In other words, we make a gradient-descent-like
move on λ, then project the updated multipliers onto the
constraint set Λ so that they keep non-negative and satisfy
the flow conservation in Equation (21).

10

TABLE I The statistics of the ICCAD2015 contest bench-
marks [25].

Benchmark #Cells #Nets #Pins #Rows

superblue1 1209716 1215710 3767494 1829
superblue3 1213253 1224979 3905321 1840
superblue4 795645 802513 2497940 1840
superblue5 1086888 1100825 3246878 2528
superblue7 1931639 1933945 6372094 3163
superblue10 1876103 1898119 5560506 3437
superblue16 981559 999902 3013268 1788
superblue18 768068 771542 2559143 1788

[24] uses a modified subgradient method to update the
multipliers according to STA results. Multipliers at primary
outputs and standard cells are updated according to Equa-
tion (27). Based on that, we additionally introduce rise and fall
edge information to obtain a more accurate delay estimation
since we use a more detailed STA tool.

λL
ij

(m+1)
= (aLi + dLij)(a

L
j)

−1λL
ij

(m)
, ∀(i, j) : vi ∈ Fj ,

λE
ij

(m+1)
= aEj (a

E
i + dEij)

−1λE
ij

(m)
, ∀(i, j) : vi ∈ Fj ,

λL
j
(m+1)

= aLj (r
L
j)

−1λL
j
(m)

, ∀j : vj ∈ VPO,

λE
j
(m+1)

= rEj (a
E
j)

−1λE
j
(m)

, ∀j : vj ∈ VPO.
(27)

All the arrival times are extracted from static timing analy-
sis. The timer also calculates the delay values. With the help
of Equation (27), the multipliers in the m-th iteration λ(m)

will be updated to λ(m+1) that will be used in the following
local search iteration.

After being updated, all multipliers need to be scaled in
the reverse topological order according to Equation (21) to
satisfy the flow conservation condition [34]. Multipliers on
critical paths tend to increase rapidly under the effect of
flow conservation, which is in line with our expectation of
increasing the net weights on critical path:

λ̂ij =

∑
k:vj∈Fk

λjk∑
i:vi∈Fj

λij
λij . (28)

The multiplier update in Equation (28) should be executed in
the reverse topological order. After a full step of multiplier
update, the parameter λ should satisfy the flow conservation
requirement.

V. EXPERIMENTAL RESULTS

A. Experimental Setup
We conducted experiments on the ICCAD 2015 contest

benchmark suites [25]. Parameters of the design are shown in
TABLE I. All the cases are relative large since most of them
contain a great number of cells and nets. Movable macros are
not included in any benchmark.

We implemented the proposed algorithm in C++ based on
the open-source placement tool DREAMPlace [26] and the
open-source timer OpenTimer [35]. Notably, we manage to
fully utilized GPU resources in both core placement [26] and
timing analysis [36]. For fairness of comparison, we use the
same default hyperparameter settings of DREAMPlace [26].

B. TNS and WNS Improvement

It is important to determine when we should set up ob-
servation, perform timing analysis and update net weights.
Performing a timing analysis in each iteration is not possible,
as it introduces a huge overhead. Initially, all cells are
concentrated to the center of the layout and their locations
are highly overlapped, so that reliable timing analysis results
cannot be given until cells are approximately uniform out by
density forces. In our experiments, we evaluate timing metrics
and update net weights every 15 iterations after the 500th
iteration of the global placement. In addition, we update the
net weights using the manually customized hyperparameters
in Equation (12). We use η = 1−α and the decay factor α is
set to 0.5 by default for all benchmarks. Since the large-scale
benchmarks may be affected by various factors, the optimal
α may also vary for different cases.

However, our detailed placement algorithm is highly sensi-
tive to timing metric, since the movement of cells on critical
path has a significant impact on the delay and affects the
next round of iterations. Therefore, we choose to build RC
tree right after discrete local search and overlap removal at
each iteration. Additionally, because of the flow conservation
condition, multipliers on critical paths may grow exponen-
tially and lead to inaccurate location prediction after too
many iterations, so we terminate our algorithm when no slack
improvement is observed and take the optimal solution. In
our experiments, the optimal solution will appears within 10
iterations in most cases.

Using the evaluation script provided by the ICCAD 2015
contest, we evaluate our global placement and detailed place-
ment solution after legalization. The results are listed in
TABLE II. As indicated in the table, compared with the
DREAMPlace [26] without any timing-aware optimization,
our algorithm can significantly improve both TNS (50.59%
on average) and WNS (38.15% on average) after the timing-
driven global placement and detailed placement, which con-
firms the effectiveness of our algorithm.

In addition, we implement the classic dynamic net weight-
ing scheme in [10] for a comparison. This net weighting
scheme is used for timing-driven quadratic placement and can
The results are listed in the second column of TABLE II. The
best result among all results is highlighted using boldface,
and the second one is colored with brown. As indicated in
the table, our algorithm can outperform [10] a lot on TNS,
which brings us a positive enlightenment that it is definitely
useful considering timing-aware optimization at both global
placement and detailed placement stage.

Notably, we also compare our proposed algorithm to the
outstanding open-source end-to-end silicon compiler Open-
ROAD [37] (code available in [38]) in TABLE II. The timing-
driven flag is turned on to incorporate net weighting for timing
optimization in global placement. OpenROAD [37] has inte-
grated RePlAce [39] as its global placer. The corresponding
results of OpenROAD [37] in TABLE II are collected after
legalization. In our experiments, we found that the default
parameter settings would induce divergence on the ICCAD
2015 contest benchmarks [25], so we slightly decreased the

11

TABLE II Comparison among DREAMPlace [26], DREAMPlace [26]+ [10], OpenROAD [37], our timing-driven global
placement only [1] and our algorithm including both global and detailed placement. The best results are emphasized with
boldface, and the second-best results are colored in brown. The TNS unit and the WNS unit are 105ps and 103ps, respectively.

Benchmark DREAMPlace [26] DREAMPlace [26]+ [10] OpenROAD [37] Our GP [1] Our GP + Our DP
TNS WNS TNS WNS TNS WNS TNS WNS TNS WNS

superblue1 -252.359 -18.5414 -121.963 -13.1548 -192.369 -28.0059 -85.0315 -14.1031 -67.0417 -13.0626
superblue3 -88.4701 -33.2509 -61.2222 -15.6518 -70.2105 -23.3123 -54.7427 -16.4341 -52.2784 -16.2643
superblue4 -196.498 -21.4654 -177.800 -11.8600 -190.705 -21.6523 -144.380 -12.7808 -136.174 -11.0606
superblue5 -208.943 -48.4825 -108.019 -47.7110 -140.441 -35.7177 -95.7820 -26.7602 -94.0022 -23.7035
superblue7 -161.989 -20.3957 -84.3107 -19.9126 -194.620 -19.0151 -63.8629 -15.2163 -58.3746 -15.2163
superblue10 -839.134 -33.7599 -786.359 -29.0470 -575.778 -23.3536 -768.748 -31.8796 -705.795 -25.3786
superblue16 -438.267 -16.8146 -175.543 -18.5297 -523.530 -18.2700 -124.181 -12.1115 -118.697 -11.2812
superblue18 -90.4280 -20.1261 -69.4700 -11.7831 -75.8221 -9.95419 -47.2458 -11.8705 -43.4910 -11.6939

Average Ratio 2.357 1.667 1.385 1.270 2.176 1.460 1.089 1.090 1.000 1.000

TABLE III The HPWL and Runtime comparison of timing-driven placement among DREAMPlace [26], DREAMPlace [26]+
[10], OpenROAD [37], our timing-driven global placement only [1], and our algorithm including both global and detailed
placement. The unit of Runtime is second.

Benchmark DREAMPlace [26] DREAMPlace [26]+ [10] OpenROAD [37] Our GP [1] Our GP + Our DP
HPWL Runtime HPWL Runtime HPWL Runtime HPWL Runtime HPWL Runtime

superblue1 420.3 164.69 426.6 1320.73 462.4 8986.78 443.1 977.56 446.5 2242.98
superblue3 474.3 153.93 480.9 1247.24 598.7 17535.67 482.4 952.11 490.6 1866.07
superblue4 313.9 112.33 318.9 910.77 324.9 6296.16 335.9 610.26 346.4 2040.10
superblue5 492.5 202.87 571.9 1758.97 518.8 10882.33 556.2 1343.46 560.2 2490.95
superblue7 599.1 249.32 607.9 1968.70 627.4 11443.82 604.0 1537.42 620.8 3113.60
superblue10 935.9 308.81 941.8 1871.55 946.6 11467.05 1036.7 1288.63 1044.1 4485.27
superblue16 432.2 102.88 455.6 875.13 455.5 8861.90 448.1 542.15 495.0 1961.69
superblue18 232.9 104.06 240.1 887.29 264.8 4326.45 253.6 657.47 266.1 1457.67

Average Ratio 0.913 0.071 0.948 0.553 0.994 4.322 0.970 0.412 1.000 1.000

cofmax value (default to 1.05) until the global placement con-
verged. The cofmax values in our experiments on the ICCAD
2015 contest benchmarks [25] are set to 1.02, 1.01, 1.02, 1.02,
1.05, 1.05, 1.015, and 1.05 for the eight benchmarks in order.
More details of the physical meanings of cofmax can be found
in the experiment section of RePlAce [39]. In addition, we
particularly set the stop overflow threshold (default to 0.1) of
superblue5 to 0.125 as there exists convergence difficulty
when OpenROAD [37] is trying to reduce the overflow.
Compared to OpenROAD [37], our proposed algorithm in GP
and DP shows competivity on the two main timing objectives
TNS and WNS.

Compared to our previous work which only implement
optimization at global placement stage, our additional detailed
placement algorithm achieves further timing optimization on
both TNS and WNS. Although our net weighting scheme
at global placement stage outperforms other algorithms in
an average sense, it is still inferior in some benchmark to
[10]. And after detailed placement, our algorithm achieves
optimality in most benchmarks.

C. Visualization in Global Placement

To visualize the impact of net weighting on TNS and
WNS at global placement stage, we plot the TNS and WNS
values on superblue18 after the 300th iteration in Fig. 6.
At the beginning, the cells kept repelling each other, thus
increases the wirelength while decreases TNS and WNS.

300 400 500 600 700

-90

-80

-70

-60

-50

-40

-30

TNS
(105ps)

The Placement Iterations

TNS (net weighting)
TNS (equal weights)

timing iteration

(a) The TNS curve in placement

300 400 500 600 700

-20

-18

-16

-14

-12

-10

-8

WNS
(103ps)

The Placement Iterations

WNS (net weighting)
WNS (equal weights)

timing iteration

(b) The WNS curve in placement

Fig. 6 The TNS and WNS values at each global placement
iteration after the 300th iteration for superblue18.

The blue curves indicate the result without any timing-aware
optimization, and the red ones shows how the objective
function oscillate under the influence of net weighting. The
timing iterations are emphasized with scattered red squares.

• At almost every timing iteration, marked in red in Fig. 6,
TNS can be improved immediately, especially when the
balance of net weights starts to break down.

• After one or two net weighting steps, the WNS is quickly
and significantly optimized. Thereafter, it remains almost
stable in the later stages of global placement.

If our net weighting algorithm works for every net instead

12

Runtime
Breakdown

Parsing and Initialization 4.2%

Global
Placement

40.9%

Others
1.4% Core

Placement
13.6%

Net Weighting
2.7%

Timing Analysis
3.2%

Detailed
Placement

54.9%

Others 1.9%

LRS
42.5%

LDP

3.3%

Discrete
Local Search

40.4%

Overlap Removal 2.1%

STA and Multiplier Update 3.3%

RC Tree
27.2%

RC Tree
in GP
20.0%

RC Tree
in DP
7.2%

Fig. 7 The overall runtime breakdown on the ICCAD2015
contest benchmark superblue18 including both global and
detailed placement.

of only some critical paths at a specific timing iteration, it
makes sense when optimizing the TNS, which may contain
many critical or near-critical paths. As for WNS, it may
only provide information about few worst paths, which will
be optimized quickly when the net weighting is applied for
the first time. At later stages, other critical or nearly critical
paths will be considered more often, and this is an important
reason why it is difficult to optimize WNS further at global
placement.

D. Wirelength and Runtime

We compare the circuit wirelength and runtime in TA-
BLE III. The HPWL results in TABLE III are scaled from
that evaluated by the ICCAD 2015 contest evaluation script.
The site width is lsite is 380 in all benchmarks of [25] and the
DEF unit udef is 2000. The relationship between the evaluated
HPWL Weval and the reported HPWL Wreport in TABLE III
is determined by

Wreport =
10−6udef

lsite
Weval. (29)

Net weighting targets at optimizing timing objectives, re-
gardless of wirelength quality loss. One may explicitly set
an upper bound to prevent net weights from becoming too
large if required, so that the wirelength quality loss could be
limited. TABLE III reveals that our proposed net weighting
and detailed placement is still competitive compared to the
outstanding timing-driven version of OpenROAD [37] on
wirelength and runtime.

Since timing-driven placement has to perform STA and
translate the feedback to certain operations, it signifi-
cantly sacrifice runtime performance compared to DREAM-
Place [26] which is extremely fast to optimize cell locations
on GPUs.

Compared to [26] without any timing-aware optimization,
we roughly take 5 times runtime to optimize negative slacks

TABLE IV Comparison of TNS and WNS results with dif-
ferent cell delay models in detailed placement. The TNS unit
and the WNS unit are 105ps and 103ps, respectively.

Benchmark Timing model in [24] Ours
TNS WNS TNS WNS

superblue1 -66.4884 -13.1423 -67.0417 -13.0626
superblue3 -52.7973 -17.0728 -52.2784 -16.2643
superblue4 -136.366 -11.1400 -136.174 -11.0606
superblue5 -93.2448 -25.1624 -94.0022 -23.7035
superblue7 -57.5153 -15.2163 -58.3746 -15.2163
superblue10 -707.714 -26.1679 -705.795 -25.3786
superblue16 -119.500 -11.3635 -118.697 -11.2812
superblue18 -43.9558 -11.7931 -43.4910 -11.6939

Average Ratio 1.000 1.021 1.000 1.000

in global placement. The detailed placement takes more time
to refine the solution as it has to re-calculate the timing delay
for a huge amount of delay arcs. Although the runtime degra-
dation posed by timing analysis is significant and inevitable,
our entire timing-driven global optimization consumes an
acceptable time compared to OpenROAD [37].

Fig. 7 plots the overall runtime breakdown on the bench-
mark superblue18 for both the global and detailed place-
ment. At the global placement stage, constructing RC tree is
the main bottleneck, which is accomplished on CPUs and
thus very time-consuming, especially for large nets. Since
STA must be called multiple times to incorporate changes of
cell locations, the overhead of STA and RC tree construction
should be the focus of the acceleration.

At the detailed placement stage, we are facing the runtime
bottleneck dominated by the discrete local search, as we
need to estimate the delay change for a number of location
candidates. We set the window size to 63×5 and search
stride to 5× site width, which reach a balance between
runtime and placement quality. Note that our delay estimation
in Section IV-A is based on the assumption that each node will
not be moved too far away from the original location. A large
window size setting will give too many candidate locations,
resulting in large runtime overhead. Besides, a large displace-
ment may incur significant inaccuracy of delay estimation.
On the other hand, too small window size apparently would
prevent us from finding better cell locations as the solution
space is limited.

E. Detailed Placement Optimization

Since we adopt a more accurate cell delay model for cost
computation in our detailed placement, we also compare
the TNS and WNS results with different timing models
in TABLE IV. The first two columns are results obtained
using the rough linear delay model in [24]. It is confirmed
in TABLE IV that a more accurate delay model can lead to
a significant WNS improvement.

Differentiable timing-driven placement [40] is another pow-
erful technique to optimize timing in global placement. The
significant improvements of TNS and WNS can be observed
as they are integrated as penalty terms in the general objective
of differentiable timing [40]. The gradient computation of the

13

TABLE V Comparison of TNS, WNS, HPWL and Runtime before and after our detailed placement based on the results of
differentiable-timing-driven placement [40]. The TNS unit and the WNS unit are 105ps and 103ps, respectively. The HPWL is
evaluated by the ICCAD 2015 contest evaluation script and scaled according to Equation (29). The unit of Runtime is second.

Benchmark [40] [40] + Our DP
TNS WNS HPWL Runtime TNS WNS HPWL Runtime

superblue1 -74.8538 -10.7695 423.8 268.31 -74.3638 -10.4355 424.0 1106.76
superblue3 -39.4299 -12.3742 478.4 266.65 -37.1255 -11.9170 479.1 1087.66
superblue4 -82.9243 -8.49154 312.2 156.36 -78.9090 -8.00840 313.3 1706.42
superblue5 -108.076 -25.2123 488.7 259.26 -102.491 -23.7488 491.1 1684.31
superblue7 -46.4264 -15.2163 602.1 450.85 -45.2301 -15.2163 602.5 1437.83
superblue10 -558.054 -21.9740 934.4 265.24 -515.003 -18.7072 936.6 2962.40
superblue16 -87.0255 -10.8544 485.1 217.65 -66.2820 -9.67800 491.0 1680.10
superblue18 -19.3143 -7.98730 243.6 156.99 -16.6570 -5.75639 243.9 968.39

Average Ratio 1.095 1.110 0.997 0.178 1.000 1.000 1.000 1.000

timing objectives in [40] is strongly bonded to the delay model
and directly implemented according to an explicit form of
gradients. Therefore, this approach is limited by the adopted
timing model, resulting in unavoidable inflexibility.

TABLE V indicates that our detailed placement is able
to further optimize TNS and WNS based on the results of
the differentiable-timing-driven placement [40]. We acquired
the placement solutions from the authors of [40] for the
initialization of detailed placement. The slack improvement
is up to 10% for both TNS and WNS on the ICCAD2015
contest benchmarks [25], which confirms the effectiveness of
the detailed placement.

VI. CONCLUSION

In this paper, we propose a momentum-based net weight-
ing scheme for timing-driven global placement, enhance the
preconditioner accordingly and further improve timing quality
in the timing-driven detailed placement based on Lagrangian
multipliers. The evaluation results on ICCAD2015 contest
benchmarks show that we can significantly improve both TNS
and WNS. We use different strategies to optimize timing in
these two stages, but both inspire us to notice the importance
of placement in physical design. Although most timing-aware
optimization methods are performed at incremental stages, it
is still very effective to consider timing at the earlier stages
of physical design, especially the global placement and the
detailed placement.

REFERENCES

[1] P. Liao, S. Liu, Z. Chen, W. Lv, Y. Lin, and B. Yu, “DREAMPlace 4.0:
timing-driven global placement with momentum-based net weighting,”
in IEEE/ACM Proceedings Design, Automation and Test in Eurpoe
(DATE). IEEE, 2022, pp. 939–944.

[2] I. L. Markov, J. Hu, and M.-C. Kim, “Progress and challenges in VLSI
placement research,” Proceedings of the IEEE, vol. 103, no. 11, pp.
1985–2003, 2015.

[3] M. Burstein and M. N. Youssef, “Timing influenced layout design,” in
ACM/IEEE Design Automation Conference (DAC). IEEE, 1985, pp.
124–130.

[4] A. E. Dunlop, V. D. Agrawal, D. N. Deutsch, M. Jukl, P. Kozak, and
M. Wiesel, “Chip layout optimization using critical path weighting,” in
ACM/IEEE Design Automation Conference (DAC). IEEE, 1984, pp.
133–136.

[5] H. Chang, E. Shragowitz, J. Liu, H. Youssef, B. Lu, and S. Sutanthav-
ibul, “Net criticality revisited: An effective method to improve timing in
physical design,” in ACM International Symposium on Physical Design
(ISPD), 2002, pp. 155–160.

[6] T. Kong, “A novel net weighting algorithm for timing-driven place-
ment,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2002, pp. 172–176.

[7] B. Halpin, C. R. Chen, and N. Sehgal, “A sensitivity based placer for
standard cells,” in Proceedings of the 10th Great Lakes symposium on
VLSI, 2000, pp. 193–196.

[8] T.-Y. Wang, J.-L. Tsai, and C. C.-P. Chen, “Sensitivity guided net
weighting for placement driven synthesis,” in ACM International Sym-
posium on Physical Design (ISPD), 2004, pp. 124–131.

[9] Z. Xiu and R. A. Rutenbar, “Timing-driven placement by grid-warping,”
in ACM/IEEE Design Automation Conference (DAC), 2005, pp. 585–
591.

[10] H. Eisenmann and F. M. Johannes, “Generic global placement and
floorplanning,” in ACM/IEEE Design Automation Conference (DAC),
1998, pp. 269–274.

[11] B. M. Riess and G. G. Ettelt, “Speed: Fast and efficient timing driven
placement,” in IEEE International Symposium on Circuits and Systems
(ISCAS), vol. 1. IEEE, 1995, pp. 377–380.

[12] B. Obermeier and F. M. Johannes, “Quadratic placement using an
improved timing model,” in ACM/IEEE Design Automation Conference
(DAC). IEEE, 2004, pp. 705–710.

[13] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI physical design:
from graph partitioning to timing closure. Springer Science & Business
Media, 2011.

[14] W. K. Luk, “A fast physical constraint generator for timing driven
layout,” in ACM/IEEE Design Automation Conference (DAC), 1991,
pp. 626–631.

[15] T. Gao, P. M. Vaidya, and C. Liu, “A Performance Driven Macro-Cell
Placement Algorithm.” in ACM/IEEE Design Automation Conference
(DAC), 1992, pp. 147–152.

[16] R.-S. Tsay and J. Koehl, “An analytic net weighting approach for
performance optimization in circuit placement,” in ACM/IEEE Design
Automation Conference (DAC), 1991, pp. 620–625.

[17] K. Rajagopal, T. Shaked, Y. Parasuram, T. Cao, A. Chowdhary, and
B. Halpin, “Timing driven force directed placement with physical net
constraints,” in ACM International Symposium on Physical Design
(ISPD), 2003, pp. 60–66.

[18] A. Chowdhary, K. Rajagopal, S. Venkatesan, T. Cao, V. Tiourin,
Y. Parasuram, and B. Halpin, “How accurately can we model timing
in a placement engine?” in ACM/IEEE Design Automation Conference
(DAC), 2005, pp. 801–806.

[19] M. A. Jackson and E. S. Kuh, “Performance-driven placement of cell
based IC’s,” in ACM/IEEE Design Automation Conference (DAC), 1989,
pp. 370–375.

[20] W. Swartz and C. Sechen, “Timing driven placement for large standard
cell circuits,” in ACM/IEEE Design Automation Conference (DAC),
1995, pp. 211–215.

[21] T. Hamada, C.-K. Cheng, and P. M. Chau, “Prime: A timing-driven
placement tool using a piecewise linear resistive network approach,” in
ACM/IEEE Design Automation Conference (DAC), 1993, pp. 531–536.

[22] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” vol. 323, no. 6088, pp. 533–536,
1986.

[23] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng, and
C.-K. Cheng, “ePlace: Electrostatics-based placement using fast fourier
transform and Nesterov’s method,” vol. 20, no. 2, pp. 1–34, 2015.

14

[24] C. Guth, V. Livramento, R. Netto, R. Fonseca, J. L. Güntzel, and
L. Santos, “Timing-driven placement based on dynamic net-weighting
for efficient slack histogram compression,” in ACM International Sym-
posium on Physical Design (ISPD), 2015, pp. 141–148.

[25] M.-C. Kim, J. Hu, J. Li, and N. Viswanathan, “ICCAD-2015 CAD
contest in incremental timing-driven placement and benchmark suite,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2015, pp. 921–926.

[26] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z.
Pan, “DREAMPlace: Deep learning toolkit-enabled GPU acceleration
for modern vlsi placement,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2020.

[27] M.-K. Hsu, Y.-W. Chang, and V. Balabanov, “TSV-aware analytical
placement for 3D IC designs,” in ACM/IEEE Design Automation
Conference (DAC), 2011, pp. 664–669.

[28] M.-K. Hsu, V. Balabanov, and Y.-W. Chang, “TSV-aware analytical
placement for 3-D IC designs based on a novel weighted-average
wirelength model,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 32, no. 4, pp. 497–509,
2013.

[29] D. Z. Pan, B. Halpin, and H. Ren, “21 Timing-Driven Placement,”
Handbook of Algorithms for Physical Design Automation, p. 423, 2008.

[30] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilinear
Steiner minimal tree algorithm for VLSI design,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 27, no. 1, pp. 70–83, 2007.

[31] W. C. Elmore, “The transient response of damped linear networks with
particular regard to wideband amplifiers,” Journal of applied physics,
vol. 19, no. 1, pp. 55–63, 1948.

[32] M. M. Ozdal, S. Burns, and J. Hu, “Algorithms for gate sizing
and device parameter selection for high-performance designs,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 31, no. 10, pp. 1558–1571, 2012.

[33] H. Tennakoon and C. Sechen, “Nonconvex gate delay modeling and
delay optimization,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 27, no. 9, pp. 1583–1594,
2008.

[34] ——, “Gate sizing using Lagrangian relaxation combined with a
fast gradient-based pre-processing step,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2002, pp. 395–402.

[35] T.-W. Huang and M. D. Wong, “OpenTimer: A high-performance timing
analysis tool,” in IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2015, pp. 895–902.

[36] Z. Guo, T.-W. Huang, and Y. Lin, “GPU-accelerated static timing
analysis,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2020, pp. 1–9.

[37] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem et al., “Toward an
open-source digital flow: First learnings from the openroad project,” in
ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1–4.

[38] The-OpenROAD-Project, “OpenROAD,” https://github.com/
The-OpenROAD-Project/OpenROAD, Oct 16, 2022.

[39] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “RePlAce: Advancing
solution quality and routability validation in global placement,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 9, pp. 1717–1730, 2018.

[40] Z. Guo and Y. Lin, “Differentiable-Timing-Driven Global Placement,”
in ACM/IEEE Design Automation Conference (DAC), 2022, pp. 1–6.

Peiyu Liao received the B.S. degree from the
School of Mathematical Sciences, Zhejiang Univer-
sity in 2017, and the M.S. degree from the School of
Engineering, The Hong Kong University of Science
and Technology in 2019. He is currently pursing
his Ph.D. degree at the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong and the School of Integrated Circuits,
Peking University. His current research interests
include high performance computing and numerical
optimization in physical design.

Dawei Guo is currently an undergraduate student
in the School of Electronics Engineering and Com-
puter Science associated with the Center for Energy-
Efficient Computing and Applications at Peking
University, China. His research interests include
algorithm in physical design and high performance
computing.

Zizheng Guo received his B.S. degree in computer
science from Peking University in 2018. He is
currently a Ph.D. student in the School of Integrated
Circuits at Peking University. His research interests
include data structures, algorithm design, and GPU
acceleration for combinatorial optimization prob-
lems. He is currently working on static timing anal-
ysis and power analysis problems in VLSI CAD. He
is the First Place winner of the 2022 ACM Student
Research Competition (SRC) Grand Finals.

Siting Liu received her B.S. degree from the De-
partment of Computer Science, Huazhong Univer-
sity of Science and Technology in 2020. She is
currently pursing her Ph.D. degree at the Depart-
ment of Computer Science and Engineering, The
Chinese University of Hong Kong and the School of
Integrated Circuits, Peking University. Her current
research interests include deep learning applications
and GPU acceleration in physical design. She re-
ceived Best Paper Award from DATE 2022, and
Best Paper Award Nomination from DATE 2021.

Yibo Lin (S’16–M’19) received the B.S. degree
in microelectronics from Shanghai Jiaotong Uni-
versity in 2013, and his Ph.D. degree from the
Electrical and Computer Engineering Department
of the University of Texas at Austin in 2018. He
is current an assistant professor in the Computer
Science Department associated with the Center for
Energy-Efficient Computing and Applications at
Peking University, China. His research interests
include physical design, machine learning applica-
tions, GPU acceleration, and hardware security.

Bei Yu (M’15-SM’22) received the Ph.D. degree
from The University of Texas at Austin in 2014. He
is currently an Associate Professor in the Depart-
ment of Computer Science and Engineering, The
Chinese University of Hong Kong. He has served
as TPC Chair of ACM/IEEE Workshop on Machine
Learning for CAD, and in many journal editorial
boards and conference committees. He is Editor of
IEEE TCCPS Newsletter. He received nine Best
Paper Awards from DATE 2022, ICCAD 2021 &
2013, ASPDAC 2021 & 2012, ICTAI 2019, Inte-

gration, the VLSI Journal in 2018, ISPD 2017, SPIE Advanced Lithography
Conference 2016, and six ICCAD/ISPD contest awards.

https://github.com/The-OpenROAD-Project/OpenROAD
https://github.com/The-OpenROAD-Project/OpenROAD

