
PowPrediCT: Cross-Stage Power Prediction with
Circuit-Transformation-Aware Learning

Yufan Du1,2∗, Zizheng Guo2,3∗, Xun Jiang2, Zhuomin Chai2, Yuxiang Zhao2,
Yibo Lin2,3,4†,, Runsheng Wang2,3,4, Ru Huang2,3,4

1School of EECS, Peking University 2School of Integrated Circuits, Peking University
3Institute of EDA, Peking University 4Beijing Advanced Innovation Center for Integrated Circuits

{nbsdyf,xunjiang,yuxiangzhao}@stu.pku.edu.cn,{gzz,yibolin,r.wang,ruhuang}@pku.edu.cn,zhuominchai@whu.edu.cn

ABSTRACT
Accurate and efficient power analysis at early VLSI design stages
is critical for effective power optimization. It is a promising yet
challenging task to model the circuit power at early design stages,
especially during placement with the clock tree and final signal rout-
ing unavailable. Additionally, optimization-induced circuit trans-
formations like circuit restructuring and gate sizing can invalidate
fine-grained power supervision. Addressing these difficulties, we
introduce the first circuit-transformation-aware power prediction
model at placement stage with robust generalization capabilities.
Our technology includes a dedicated clock treemodel and an innova-
tive train-and-calibrate scheme that effectively integrates topologi-
cal and layout features. Compared to the cutting-edge commercial
IC engine Innovus, we have significantly reduced the cross-stage
power analysis error between placement and detailed routing.

1 INTRODUCTION
Power is one of the most fundamental objectives in VLSI design
optimization. Compared with performance and area costs, power
footprint determines design quality in more intricate aspects, in-
cluding energy efficiency, thermal performance, and voltage drop
reliability. As a result, circuit power optimization, especially at
early design stages, becomes essential as technology advancements
continue to push physical and architectural limits.

Power optimization at early design stages such as placement can
utilize a much larger design search space, which provides better
trade-offs with other metrics such as timing. Early-stage power
optimization requires fast early-stage power feedback to reduce
costly design iterations (Figure 1). The accuracy of such feedback
is directly tied to successful optimization. However, due to missing
design information such as clock tree and signal routing, cutting-
edge commercial tools [1] show up to 23% discrepancy in their
early-stage power feedbacks, leading to mistargeted optimization
efforts and eventual inferior power quality.

* Equal contribution, † Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAC ’24, June 23–27, 2024, San Francisco, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0601-1/24/06. . . $15.00
https://doi.org/10.1145/3649329.3657349

Placement

CTS

Place/Pre-CTS Opt.

Clock Opt.

Global Routing

Detailed Routing &
Opt.

Power Report

Power Opt.

Slow
Opt.

(a) Traditional flow

Placement

CTS

Place/Pre-CTS Opt.

Clock Opt.

Global Routing

Detailed Routing &
Opt.

Power Report

Power
Pred.

Early
Opt.

Power Opt.

(b) Proposed flow

Figure 1: (a) Obtaining accurate power analysis feedback is
time-consuming due to the long and compute-intensive de-
sign stages. (b) Early-stage power prediction enables fast
feedback and proactive power optimization.

Data-driven modeling such as machine learning (ML) is a promis-
ing methodology to circumvent missing design information across
stages. ML-based early-stage analysis models have thus been ap-
plied to timing [2–4], voltage drop [5–7], routing congestion [8–10],
etc. However, existing ML-based power prediction models [11–14]
mainly focus on analysis speed-ups for some specific design stages
with no cross-stage prediction available. Some of their model com-
ponents also target architecture- or design-specific features, limit-
ing their generalization to unseen designs.

On the other hand, building an accurate and generalizable power
model that can provide cross-stage power feedback is quite challeng-
ing for the following reasons. (1) A remarkable portion (20–40%)
of signoff power is consumed by the clock network, which is yet
unavailable before clock tree synthesis (CTS) is completed. Model-
ing the CTS stage is known to be difficult due to the complexity of
buffer insertions and skew management algorithms. (2) Modern IC
tools conduct heavy netlist restructuring across stages to optimize
design quality, which leads to mismatch (up to 21% [3]) of pins and
nets between netlists from different stages. This makes it nontrivial
to apply reasonable supervision on fine-grained power data. (3)
Optimization iterations between stages, e.g., moving cells around,
also introduce distribution shifts that degrade model performance.

This paper proposes the first cross-stage circuit-transformation-
aware power prediction model with superior accuracy. Our model
works at placement stage and generates accurate post-detailed-
routing power prediction for all cells and nets. We propose various
techniques to overcome the cross-stage challenges, including a dedi-
cated graph neural network (GNN) model for clock tree modeling, a

https://doi.org/10.1145/3649329.3657349

Table 1: Comparison of various power prediction methods.

Model Main Analysis Scenario Method Cross-stage Aware1 Generality to Unseen Circuits2 Main Objective
McPAT [14] RTL design Static modeling No Yes Pre-synthesis exploration
Aladdin [15] RTL design Execution-driven Yes Yes Pre-synthesis exploration

MasterRTL [16] RTL design ML-based Yes Yes Pre-synthesis exploration
SimplePower [17] RTL design LUT and Cluster No Yes Analysis speed-up
PRIMAL [18] RTL design CNN No Yes Analysis speed-up

GRANNITE [13] Physical design GNN No Yes Analysis speed-up
ECO-GNN [19] Signoff GNN No Yes Analysis speed-up

PowerTap [20], APOLLO [11] Runtime Proxy-based No No Post-manufacture monitor
Innovus at PL3 Physical design RC extraction and LUT Yes Yes Backend cross-stage
PowPrediCT Physical design GNN and CNN Yes Yes Backend cross-stage

1 If power analysis considers potential transformation information in subsequent stages, it is cross-stage aware. 2 Based on the comparison presented in [21].
3 Innovus performs power analysis at multiple stages, but our focus is on its placement stage results.

train-and-calibrate supervision scheme to combat netlist mismatch,
and a layout-aware convolutional neural network (CNN) model
for spatial information modeling and module-wise calibration. We
summarize our key contributions as follows.

• To the best of our knowledge, this is the first ML-based
cross-stage circuit-transformation-aware power prediction
model with superior accuracy and generalization capability.
Compared with the cutting-edge commercial tool Innovus,
our method significantly reduces the switching power error
between placement and post-routing stages from 23.4% to
only 4.6%, and the total power error from 9.6% to 2.0% on
unseen designs.

• Our model achieves remarkable runtime speed-up, 600×
faster than the full flow and comparable with the original
Innovus early power prediction.

• We propose a new train-and-calibrate scheme for training
cross-stage analysis models. This scheme is transformation-
aware, i.e., compatible with netlist restructuring and offers
fine-grained supervision at cell and net levels.

• We propose a dedicated GNN model for clock tree power
modeling before the actual CTS stage, unlocking the practi-
cality of cross-stage power prediction.

• We introduce a CNN model to calibrate our GNN power
model predictions. The CNNmodel offers multi-modality not
only on routing layout features but also on coarse-grained
module topology features. This enriches the model view and
provides even further accuracy improvements.

Our general methodology is effective for early-stage power feed-
back and extendable to other cross-stage prediction tasks in a broad
perspective. We open-source our model in the ML for EDA commu-
nity1. The rest of this paper is organized as follows. Section 2 gives
the preliminaries and problem formulation; Section 3 explains the
detailed framework; Section 4 demonstrates the results; Section 5
concludes the paper.

2 PRELIMINARIES
2.1 Power Analysis
In VLSI design flow, power consumption is split into three compo-
nents [22]: switching, internal, and leakage power.

(1) Switching Power is the power consumed during charging
and discharging of interconnect capacitance for each net.

𝑃switch = 0.5 ×𝐶𝐿 ×𝑉 2 × 𝐹 ×𝐴, (1)
1https://github.com/Yufan-Du/PowPrediCT/

where 𝐶𝐿 denotes the net capacitive load, 𝑉 is the voltage,
𝐹 is the frequency, and 𝐴 is the net switching activity. The
switching activity 𝐴 can be obtained either through vector-
based or vectorless toggle rate analysis. The capacitive load
𝐶𝐿 , on the other hand, is related to signal routing that is
unavailable at early stages.

(2) Internal Power is the power consumed by a cell during
signal transitions due to internal capacitances and short
circuit current. It is determined by specific cell models, often
in lookup tables (LUTs) indexed by input signal transition
and output load.

(3) Leakage Power is the basic static power consumed by cells.
It can be obtained from the library using cell input states.

2.2 Power Modeling Methods
Power modeling is an active research field and previous solutions
usually fall into 4 categories by their orthogonal objectives and
problem formulations, as we listed in Table 1. This work focuses on
backend cross-stage power modeling. To enable early-stage power
optimization, commercial tools like Innovus analyze early-stage
power using classic methods with human knowledge. These meth-
ods utilize preliminary design and early global routing data but
cannot often anticipate the impact of future circuit transformations
and clock tree construction, leading to significant cross-stage power
estimation discrepancies.

In addition to backend cross-stage modeling, some early-stage
power prediction works such as McPAT [14] and Aladdin [15] op-
erate at pre-synthesis stages. With quite limited design information
available, their primary focus is to explore the architectural design
space with limited power prediction accuracy.

Due to the long runtime of rigorous power analysis and circuit
simulation, a lot of works have been proposed in recent years that
focus on analysis speed-up. For example, works like ECO-GNN [19]
have shown promising performance boosts in power calculation.
PRIMAL [18] and GRANNITE [13] only provide toggle rate pre-
diction and do not handle power model. Regarding analysis, they
usually focus on a fixed design stage where the circuit graph has
been mostly determined. As a result, they also don’t need to con-
sider cross-stage circuit transformations that might compromise
accuracy with limited early-stage design information.

After completing circuit design and manufacturing, it is also
necessary to dynamically monitor the power consumption at run-
time. To this end, methods like APOLLO [11] and PowerTap [20]
use a subset of signals as monitors to model the overall power con-
sumption. This formulation does not need a generalizable model

AND

AND

AND

AND
AND

AND

A
B

C
D

A
B

C
D

D

Clk

Q D

Clk

Q

CLK

D

Clk

Q D

Clk

Q

CLK

Module 1 Module 1

Module 2 Module 2

Figure 2: Examples of circuit transformation: logic restruc-
turing and buffer insertion.

Table 2: Dataset statistics with remarkable cell transforma-
tions.

Design Name #Pins #Nets #Cells Cell Transformation (%)1

nvdla-small 1032047 285809 270072 16.00
Vortex-small 424710 124184 113961 18.87
Vortex-large 3753858 1105491 1018221 57.27
openc910-1 3065091 769380 754981 14.72
zero-riscy 138743 36233 35969 13.55
RISCY 180286 47241 46184 16.17

RISCY-FPU 252656 66911 65464 19.97
1 The percentage of cells inserted, removed or altered in type from placement to post-routing stage.

for different circuit designs and requires training the model on a
design-per-design basis.

2.3 Cross-Stage Circuit Transformation
In VLSI design flow, circuit transformations like netlist restruc-
turing and gate sizing [22] are pivotal for design optimization, as
shown in Figure 2. According to our observation, such transforma-
tions can result in up to 21% cell mismatches on our test circuits
(Table 2) which is similar to results in [3]. Due to the transforma-
tions, a pin (resp. cell) at the early stage is not guaranteed to match
a pin (resp. cell) in subsequent stages, as shown in Figure 2. This
makes it difficult to present well-formed supervised learning prob-
lems. Although this can be mitigated by using endpoint features for
timing prediction [3], such a technique cannot be applied to power
analysis where the fine-grained power is concerned instead of only
endpoint slacks.

2.4 Graph Neural Networks in Circuit Modeling
Graph neural networks (GNNs) have emerged as an innovative
means of processing graph-structured data like circuit netlists [3,
13, 23]. They are designed to capture graphs’ intricate relationships
and structural patterns. As a simple illustration, a node’s feature
update in GNNs can be depicted as:

ℎ
(𝑙+1)
𝑣 = 𝑓

(
ℎ
(𝑙)
𝑣 ,AGGREGATE

(
ℎ
(𝑙)
𝑢 : 𝑢 ∈ Neighbors(𝑣)

))
(2)

whereℎ (𝑙+1)𝑣 represents the updated feature of node 𝑣 , AGGREGATE
is a function that combines the features of neighboring nodes, 𝑓
combines information,ℎ (𝑙)𝑢 is the feature of node𝑢, andNeighbors(𝑣)
denotes the set of neighboring nodes of 𝑣 .

While GNNs are inherently powerful, their basic form primarily
captures information from immediate neighbors in each layer. Mul-
tiple GNN layers are required to embed features of nodes multiple

Training Phase 2: Clock Net Power Prediction

Training Phase 1: Cell-wise Pretraining

Training Phase 3: Module-wise Calibration

GNN
Model A

Post-Routing
Graphs +

Placement
Features

(Pretrain Only)

Cell-wise
Training

Post-Routing
Power Label

Cell-wise
Power

Placement
Layouts

CNN
Model

Module-wise
Calibration

Module-
wise

Training

GNN
Model A

Inference

Total
Power

GNN
Model B

Clock Net
Power

Placement
Graphs

Clock Net
Training

Cell-wise
Power

Module-wise
Power

Cell-wise
Feature

Predict

Cell-wise
Label

Clock
Net

Label

Module-
wise
Label

Placement
Graphs

Placement
Graphs

Placement
Layouts

GNN
Model A & B

CNN
Model

Cell-wise
Feature

Cell-wise &
Clock Net

Power

Module-wise
Calibration

Figure 3: Framework of our approach.

hops away. This leads to a particularly challenging training process,
often resulting in difficulty achieving convergence in large circuits
with deep logic levels [24].

2.5 Problem Formulation
Problem. Given a design at placement stage, our objective is to effi-
ciently predict the post-routing total power consumption with high
accuracy and generalization capability. This prediction should take
into account circuit transformations, like clock tree construction,
final signal routing patterns, and potential optimizations.

3 METHODOLOGY
3.1 Flow Overview
Our power prediction framework is trained in 3 phases. We present
an overview of the framework in Figure 3.

Phase 1: Cell-wise GNNModel Pretraining.We first pretrain
a cell-wise power prediction GNN model (A in Figure 3) on post-
routing circuit graphs with placement features using the training
designs. Pretraining without circuit transformation helps the model
learn the basics of power prediction without being affected by
transformation glitches. The dependency on post-routing graphs
will later be eliminated in Phase 3 where we calibrate the model to
placement graphs.

Phase 2: Clock Net Power Prediction. The clock net requires
dedicated handling due to its extremely high fanout (before CTS)
and special routing patterns. We use a dedicated GNN model (B
in Figure 3) to predict the power of the clock net, which we train
using placement graphs (i.e., no CTS information used) as features
and power labels after CTS and routing as targets.

Phase 3: Module-wise Calibration. In this stage, we take the
pretrained GNN model A and replace its input with placement
graphs. Extra epochs update GNN model A to recognize circuit
transformations between placement and routing while maintain-
ing its power prediction capability. In addition, we use a CNN to
model the layout features and utilize the natural grouping of cells in
Verilog modules to calibrate the overall model performance further.

Prop. Outwards

X->e Propagation
X.f e.f (X->e).f

MLP

e’s New Feature
(e.nf)

Prop. Backwards with Attention

Back to X Propagation

a

f ed

bc

XY

a

f ed

bc

XY
d.f X.f (d->X).f MLP

X’s New
Feature

(X.nf)

e.f X.f (e->X).f MLP

Weighted
Sum

Sum
Attention

Score MLP

e
d X

1…12 13…16
1…12 13…16

(a) Information propagation (Phase 1).

Internal Power (Cell Arc)

c.nf Y.nf
MLP

LUT Index
X Norm . Data

Process
Cell-wise

Internal Power

Switching Power (Driver Pin)

Y.f Y.nf MLP

Feature for
Phase 3

Data
Process

Cell-wise
Switching Power

Load
Capacitance

Mask LUT

Index1 Mask

Index2 Mask

c

Y

(b) Power analysis (Phase 1).

Clk Clk Clk Clk

Clk Source

Clk Clk Clk Clk

Clk Source

MLP Clock Net
Power

Prop. with
Attention

Prop.
Outwards

Clk
Source

(c) Clock net power prediction (Phase
2).

Residual Calibration

Module-wise Graph PoolingCNN Initial

Module-
wise Filter

MLP Residual +

(Conv+Pool) x 3

CNN Input
Feature

.

a b

X

Power
Sum

Feature
Aggregate

Module
Power

Cell-wise
Power

(Phase 1)
c

YCell-wise
Feature

(Phase 1)

Module Example
(Conv + Pool) x 2

(d) Module-wise calibration (Phase 3).

Figure 4: Overview of the algorithm phases.

3.2 Cell-wise GNN Model Pretraining
3.2.1 Circuit Graph Representation. In our graph-based model,
nodes represent pins and edges represent cell arcs and driver-sink
net arcs. The model inputs include:

List of node features: drive strength (1-hot), sequential element
flag (marking sequential elements like flip-flops), fanout count,
pin capacitance, rise/fall slews (obtained from early-stage timing
analysis), and design flow-related parameters (design frequency
and resource utilization).

List of net edge features: half perimeter wire length (HPWL)
of the net, distance from source to this sink pin, and relative X and
Y distance (ratios of Δ𝑥 and Δ𝑦 to total distance 𝑑 , indicating edge
orientation).

List of cell edge features: the non-linear power model (NLPM)
look-up table values and indices.

3.2.2 Information Propagation. In our GNN model, the single in-
formation propagation operation is executed through a two-step
process. Initially, during the edge message generation step, each
edge creates a message based on its features and the nodes it con-
nects. Following this, during the node message aggregation step,

nodes accumulate and process these messages, integrating infor-
mation received from all the edges that target them.

Our methodology actualizes this propagation twice through a
bidirectional propagation approach, as shown in Figure 4(a):

Driver-to-Load Propagation: Each load node receives and
directly adopts information from its corresponding edge message.

Load-to-Driver Propagation: Building upon the basic infor-
mation propagation operation, our model introduces an enhanced
attention mechanism for this step. It assigns variable weights to
edges, enabling the driver pin node to selectively aggregate signal
information from load pin nodes. This mechanism focuses on cru-
cial load pins in large nets, enhancing the model’s ability to learn
about potential net routing scenarios.
3.2.3 Power Analysis. Following graph propagation, we utilize
node and edge features for power analysis, as shown in Figure 4(b).

Internal Power Prediction: Leveraging the features after graph
propagation, we use an ML-based approach to construct a mask
for the internal power LUT, similar to [24]. The mask, when dot-
multiplied with the LUT, facilitates an interpolation-like process.
The resulting values are post-processed, including multiplication
with the equivalent toggle rate for each cell arc input and k-factor [22].

The input pin toggling’s impact on internal power follows a similar
principle and is therefore not elaborated further.

Switching Power Prediction: For net power analysis, we utilize
enriched driver pin features after the graph propagation. These
features are processed and subsequentlymultiplied by the net toggle
rate input. Additionally, each driver pin outputs a feature vector,
which serves as an input for Phase 3 processing.

3.3 Clock Net Power Prediction
Our GNN-based clock power model, as shown in Figure 4(c), has
a similar structure to the bidirectional GNN propagation model
used in Phase 1. We predict the clock tree power by considering
the interaction between the clock root and all register sinks. We
incorporate the attention mechanism in the message aggregation
procedure during clock modeling. This allows the model to recog-
nize register clusters and different clock tree levels during feature
propagation by assigning them with correlated attention vectors
according to the locations.

3.4 CNN-aided Module-wise Calibration
Our GNN model, effective in various aspects, still has limitations
that CNN integration aims to address in three key areas.

Enhanced Net Representation: The GNNmodel, while captur-
ing basic spatial features, struggles with complex interactions like
coupling capacitance and congestion effects. By integrating CNNs,
we achieve a more comprehensive net representation, incorporat-
ing detailed spatial features such as cell density and congestion,
crucial for accurately analyzing routing scenarios.

Circuit Transformation Prediction: The spatial view of the
CNN model can give complementary hints to GNN on a general
trend of spatial-induced circuit transformations, e.g., the ones intro-
duced due to routing congestion, cell density balance, and macro
interactions [3].

Reduced Cross-stage Variance: Although circuit transforma-
tions can cause cell mismatch, the Verilog module hierarchy is much
more stable. As our CNN focuses on module-level features, a more
robust supervision target can be achieved.

Therefore, we utilize a CNN model with inputs including cell
density, early congestion, macro positioning, and RUDY (Rectangu-
lar Uniform wire DensitY). As depicted in Figure 4(d), the workflow
first integrates convolution and pooling layers to process these
layout features. It then focuses on cell regions within each module
through module-specific masks. Subsequently, additional convolu-
tion, pooling, and MLP layers incorporating aggregated cell-wise
features from Phase 1 are applied. This results in residuals used
subsequently to calibrate results obtained from Phase 1.

3.5 Discussion on Early-Stage Data Integration
Cross-stage ML-based analysis models can choose to start their per-
formance by integrating the outputs of commercial tool early-stage
predictions as input features, as suggested in [25, 26] for timing
and area analyses. In practice, we also found it helpful to integrate
this feature for all types of power analysis. Leakage power bene-
fits the most, potentially because it has more consistent patterns
across stages. For internal power and switching power, we added
the corresponding feature sets.

4 EXPERIMENTAL RESULTS
4.1 Setup
We implement our models using PyTorch and the DGL graph learn-
ing framework [27]. The experiments are conducted on a Linux
machine with an NVIDIA A100 GPU (40GB), a 10-core Intel Xeon
Processor (Skylake, IBRS), and 72GB memory.

Our dataset (Table 2) is derived from CircuitNet [28], consist-
ing of 7 netlists implemented using a commercial 14nm FinFET
technology. Each design is implemented at 2 operating frequencies
(200MHz and 500MHz) and 4 layout utilizations, creating 8 samples
per design. In our experimental setup, we perform cross-validation
by training on 6 designs and testing on the remaining unseen one.
The test result is the average of 8 samples from the unseen design.
We train our model for 30 epochs in Phase 1 and an additional 2
epochs in both Phases 2 and 3. The overall training is completed
within 1 hour. Our model targets generalization across different
netlists. As a result, we do not account for training runtime in total
runtime evaluation.
4.2 Power Prediction Accuracy
Table 3 lists a complete cross-validation accuracy comparison be-
tween Innovus and our PowPrediCT model at placement stage. We
set the golden results as reported by Innovus after detailed routing.
Early-stage Innovus analysis exhibits notable discrepancy with later
stages, yielding an average 9.652% total power error and 23.375%
switching power error. On the other hand, our model outperforms
Innovus on all but the smallest designs, yielding an average 1.981%
total power error and 4.559% switching power error.

To further demonstrate the effectiveness of the proposed Pow-
PrediCT model, we compare its performance with a vanilla GNN
model and a simplified PowPrediCT model without calibration and
clock tree modeling (Phase 1 only). The vanilla GNN employs a
semi-supervised learning approach that treats mismatched cells
as unlabeled instances. It unsurprisingly yields poor accuracy on
designs with extensive transformations. Meanwhile, the “Phase 1
Only” column in Table 3 shows notable degradations in accuracy
compared to full PowPrediCT. These results demonstrate the ef-
fectiveness of our proposed model in cross-stage power prediction
and the importance of modeling the clock tree and handling circuit
transformations during the prediction.
4.3 Runtime Comparison
The runtime of power evaluation feedback is critical for a fast de-
sign closure because early stages involve multiple optimization
iterations. A signoff accurate power feedback requires a full imple-
mentation process, including the time-consuming CTS and routing
stages. This often takes several hours as shown in Table 4, which is
unacceptable to use as early stage feedbacks. On the other hand, our
model inference only takes 1.31 seconds on average. Even consid-
ering data preparation runtime, we achieve very small total power
error with hundreds of time speed-up compared to running full-chip
implementation. The Innovus built-in power prediction algorithm
runs in 2 minutes on average. Integration of our flow can add up
to 1 minute to that runtime, which mostly comes from the data
preparation step. The slower data preparation is mainly due to the
Tcl interface overhead, which can be greatly optimized given better
data integration with the placement engine in future production.

Table 3: Relative error (%) comparison. The best results are highlighted in bold.

Design name Internal Power Switching Power Leakage Power Total Power
Innovus at PL PowPrediCT Innovus at PL PowPrediCT Innovus at PL PowPrediCT Vanilla GNN Innovus at PL Phase 1 Only PowPrediCT

RISCY 0.651 0.808 24.999 3.144 4.533 0.747 8.322 9.202 2.961 1.285
RISCY-FPU 1.246 0.910 23.120 2.495 4.181 0.820 6.770 9.475 2.795 1.467
Vortex-large 1.567 0.955 9.626 8.774 9.972 5.469 29.892 5.100 9.540 4.334
Vortex-small 1.455 1.169 15.442 1.287 5.640 4.410 31.880 7.691 8.697 0.991
nvdla-small 2.139 0.356 33.709 7.294 7.315 2.686 9.370 10.892 3.457 2.009
openc910-1 4.014 0.734 29.568 5.870 4.026 1.146 5.123 15.122 6.692 2.599
zero-riscy 0.896 0.365 27.166 3.049 5.449 1.288 7.683 10.083 1.597 1.179

Average 1.710 0.757 23.376 4.559 5.874 2.367 14.149 9.652 5.106 1.981

2 9 . 8 9 2 3 1 . 8 8 1 5 . 1 2 2

R I S C Y R I S C Y - F P U V o r t e x - l a r g e V o r t e x - s m a l l n v d l a - s m a l l o p e n c 9 1 0 - 1 z e r o - r i s c y A v e r a g e
0
5

1 0
1 5

To
tal

 Po
we

r
Re

lat
ive

 Er
ror

 (%
)

 V a n i l l a G N N
 I n n o v u s a t P L
 P h a s e 1 O n l y
 P o w P r e d i C T

Figure 5: Total power relative error of different methods across different test sets.

Table 4: Runtime (s) comparison. Column names represent:
PA (Power Analysis), Pre. (Data Preprocessing), Infer (Infer-
ence).

Design Innovus at PL Innovus Full Flow PowPrediCT
PA at PL CTS Routing PA Total Pre. Infer Total

RISCY 37 2034 7254 34 9322 17.61 0.72 18.33
RISCY-FPU 51 7949 9625 43 17617 21.23 0.65 21.88
Vortex-large 217 82328 19031 107 101466 156.94 2.68 159.62
Vortex-small 92 10092 12605 78 22775 36.56 1.55 38.11
nvdla-small 219 49669 22019 105 71793 110.01 0.95 110.96
openc910-1 242 13112 50569 145 63826 117.27 2.31 119.58
zero-riscy 26 1728 5523 27 7278 12.72 0.31 13.03
Average 126 23845 18089 77 42011 67.48 1.31 68.79

5 CONCLUSION
In this work, we present an accurate and efficient cross-stage power
prediction model for power feedback at placement stage. We use a
dedicated GNN model to predict the power of the clock tree before
CTS. We present a transformation-aware training and calibration
scheme compatible with netlist restructuring. We combine the ca-
pabilities of both topological features and layout features and both
fine-grained and coarse-grained power annotations. The exper-
imental results show that our generalizable PowPrediCT model
drastically reduces cross-stage power analysis error compared to
a commercial tool on unseen designs. Moreover, it achieves sig-
nificant speed-up relative to the tool’s full flow. Our future work
includes integration into open-source placement engines. We be-
lieve our powerful power model can further empower early-stage
power optimization.

ACKNOWLEDGE
This work was supported in part by the National Science and Tech-
nology Major Project (Grant No. 2021ZD0114702), the Natural Sci-
ence Foundation of Beijing, China (Grant No. Z230002), and the 111
Project (B18001).
REFERENCES
[1] “Cadence Innovus Implementation System,” http://www.cadence.com.
[2] X. He et al., “Accurate timing prediction at placement stage with look-ahead RC

network,” in Proc. DAC. San Francisco California: ACM, Jul. 2022, pp. 1213–1218.
[3] Z. Wang et al., “Restructure-tolerant timing prediction via multimodal fusion,” in

Proc. DAC, 2023, pp. 1–6.
[4] Y. Ye et al., “Fast and Accurate Wire Timing Estimation Based on Graph Learning,”

in Proc. DATE. Antwerp, Belgium: IEEE, Apr. 2023, pp. 1–6.
[5] J.-X. Chen et al., “Vector-based Dynamic IR-drop Prediction Using Machine

Learning,” in Proc. ASPDAC. Taipei, Taiwan: IEEE, Jan. 2022, pp. 202–207.

[6] Z. Xie et al., “PowerNet: Transferable Dynamic IR Drop Estimation via Maximum
Convolutional Neural Network,” in Proc. ASPDAC. Beijing, China: IEEE, Jan.
2020, pp. 13–18.

[7] C.-T. Ho, A. B. Kahng, and E. Departments, “IncPIRD: Fast Learning-Based Pre-
diction of Incremental IR Drop,” in Proc. ICCAD. ACM, 2019.

[8] B. Wang et al., “LHNN: lattice hypergraph neural network for VLSI congestion
prediction,” in Proc. DAC. San Francisco California: ACM, Jul. 2022, pp. 1297–
1302.

[9] Z. Xie et al., “RouteNet: routability prediction for mixed-size designs using con-
volutional neural network,” in Proc. ICCAD. San Diego California: ACM, Nov.
2018, pp. 1–8.

[10] R. Kirby et al., “CongestionNet: Routing Congestion Prediction Using Deep Graph
Neural Networks,” in Proc. VLSI-SoC. Cuzco, Peru: IEEE, Oct. 2019, pp. 217–222.

[11] Z. Xie et al., “Apollo: An automated power modeling framework for runtime
power introspection in high-volume commercial microprocessors,” in Proc. MI-
CRO, 2021, p. 1–14.

[12] D. Zoni, L. Cremona, and W. Fornaciari, “Powerprobe: Run-time power modeling
through automatic rtl instrumentation,” in Proc. DATE, 2018, pp. 743–748.

[13] Y. Zhang, H. Ren, and B. Khailany, “Grannite: Graph neural network inference
for transferable power estimation,” in Proc. DAC, 2020, pp. 1–6.

[14] S. Li et al., “Mcpat: An integrated power, area, and timing modeling framework
for multicore and manycore architectures,” in Proc. MICRO, 2009, pp. 469–480.

[15] Y. S. Shao et al., “Aladdin: A pre-rtl, power-performance accelerator simulator
enabling large design space exploration of customized architectures,” in Proc. ISCA,
2014, pp. 97–108.

[16] W. Fang et al., “Masterrtl: A pre-synthesis ppa estimation framework for any rtl
design,” in Proc. ICCAD, 2023.

[17] W. Ye et al., “The design and use of simplepower: a cycle-accurate energy estima-
tion tool,” in Proc. DAC, 2000, pp. 340–345.

[18] Y. Zhou et al., “Primal: Power inference using machine learning,” in Proc. DAC,
2019, pp. 1–6.

[19] Y.-C. Lu et al., “Eco-gnn: Signoff power prediction using graph neural networks
with subgraph approximation,” ACM TODAES, vol. 28, no. 4, may 2023.

[20] D. Zoni et al., “Powertap: All-digital power meter modeling for run-time power
monitoring,” Microprocess. Microsystems, vol. 63, pp. 128–139, 2018.

[21] J. Zhai et al., “Mcpat-calib: A risc-v boom microarchitecture power modeling
framework,” IEEE TCAD, vol. 42, no. 1, pp. 243–256, 2023.

[22] Cadence Design Systems, Innovus User Guide, Cadence Design Systems, Inc.,
2022, version 21.13.

[23] K. Zhu et al., “Exploring logic optimizations with reinforcement learning and
graph convolutional network,” in Proc. DAC, 2020, pp. 145–150.

[24] Z. Guo et al., “A timing engine inspired graph neural network model for pre-
routing slack prediction,” in Proc. DAC. ACM, 2022.

[25] A. Agiza et al., “Graphsym: Graph physical synthesis model,” in Proc. ICCAD,
2023.

[26] K. Chang et al., “DTOC: integrating Deep-learning driven Timing Optimization
into the state-of-the-art Commercial EDA tool,” in Proc. DATE. IEEE, 2023.

[27] M. Wang et al., “Deep graph library: Towards efficient and scalable deep learning
on graphs,” CoRR, vol. abs/1909.01315, 2019.

[28] Z. Chai et al., “CircuitNet: An open-source dataset for machine learning in vlsi
cad applications with improved domain-specific evaluation metric and learning
strategies,” IEEE TCAD, 2023.

http://www.cadence.com

