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ABSTRACT
The pipeline is a fundamental pattern to parallelize a series of

stage tasks over a sequence of data in loops. Mainstream pipeline

programming frameworks count on data abstractions to perform

pipeline scheduling. Although this design is convenient for data-

centric parallel applications, it is not efficient for algorithms that

only exploit task parallelism in the pipeline. To address the lim-

itation, we introduce a new task-parallel pipeline programming

framework called Pipeflow. Pipeflow separates data abstractions

and task scheduling, enabling a more efficient implementation of

task-parallel pipeline algorithms than existing frameworks. We

have evaluated Pipeflow on both micro-benchmarks and real-world

applications. For example, in a timing analysis workload that ex-

plores pipeline parallelism to speed up the runtime performance,

the Pipeflow’s implementation outperforms the oneTBB’s imple-

mentation up to 110.33% faster.
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1 INTRODUCTION
The pipeline is a fundamental parallel pattern to model parallel

executions through a linear chain of stages. Each stage processes

a data token after the previous stage, applies an abstract function

to that token, and then resolves the dependency for the next stage.
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Multiple data tokens can be processed simultaneously across differ-

ent stages whenever dependencies are met. For example, in circuit

simulation [26, 35–37], some operations on a gate (e.g., NAND,

OR, AND) do not depend on other gates and thus can be done at

multiple logic levels simultaneously, while operations at the same

levels require processing prior levels first. As pipeline parallelism

widely exists in modern computing applications [5], there is always

a need for new pipeline programming frameworks to streamline

the implementation complexity of pipeline algorithms.

Recently, several pipeline programming frameworks have

emerged to assist developers in implementing pipeline algorithms

withoutworrying about scheduling details, such as oneTBB [1], Fast-

Flow [4], GrPPI [13], Cilk-P [50], SPar [15], and HPX-pipeline [46].

While each of these frameworks has its pros and cons, a common

design philosophy is to perform data synchronizations using buffers

between stages (i.e., data abstraction) in their pipeline scheduling

designs, as illustrated in Figure 1. This design is convenient for data-

centric pipeline applications but also has two limitations. Firstly,

users have to design their pipeline algorithms in the data-parallel

manner. However, data management is often application-dependent.

Many applications exhibit pipeline parallelism among tasks rather
than data. For example, the VLSI timing analysis application [9, 10]

formulates a sequence of linearly dependent propagation tasks in a

graph node and runs independent nodes in parallel to efficiently

update the timing data from a custom global shared graph data

structure. The real need is a pipeline scheduling framework to sched-
ule and run tasks while leaving data management completely to

applications.

Stage 1 Stage 2 Stage N
Application  

       data

Data-centric pipeline framework

Output 

   data

Figure 1: An illustration of data abstraction in a pipeline
framework. Gray bars are buffers used for data synchroniza-
tions.

Secondly, scheduling algorithms involve complex synchroniza-

tions between data and buffer structures. These frameworks typ-

ically leverage object allocators and buffer structures to manage

temporary data between stages (e.g., oneTBB [1]). However, the syn-

chronizations can be redundant in some applications. For instance,

ferret [5], a pipeline benchmark of PARSEC, defines six stages (load-

ing, segmentation, extraction, indexing, ranking, and output) in its
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oneTBB implementation to perform image similarity search. Ev-

ery stage is defined as a derived class of oneTBB’s tbb::filter
and has an overridden operator that takes an input void* pointer
returned from the previous stage. The pointer points to a global
data structure all_data, bypassing all the data abstractions in the

oneTBB pipeline.

To overcome these limitations, we introduce in this paper

Pipeflow, a new task-parallel pipeline programming framework.

We summarize our contributions as follows:

• Task-Parallel Pipeline. We have introduced a new task-
parallel pipeline programming concept that separates task

scheduling and data abstraction. This separation allows us

to concentrate on the pipeline tasking itself, enabling a more

efficient implementation of task-parallel pipeline algorithms

than existing frameworks.

• Programming Model. We have introduced a new C++ pro-

gramming model to support our concept. Unlike existing

models, we do not provide yet another data abstraction but a

flexible framework for users to fully control their application

data atop a task-parallel pipeline scheduling framework.

• Scheduling Algorithm. We have introduced a new sched-

uling algorithm to schedule stage tasks across parallel lines.

Since we do not touch data abstraction, we can avoid com-

plex data buffer designs and synchronization mechanisms

to enable more lightweight and efficient scheduling.

We have evaluated Pipeflow on both micro-benchmarks and real-

world applications. For example, in a real-world VLSI static timing

analysis workload, the Pipeflow implementation outperforms the

oneTBB implementation up to 110.3% faster. Right now, Pipeflow is

merged into the open-source Taskflow project [33].

2 BACKGROUND
We first review the pipeline basics and then detail the motivation of

Pipeflow. We then argue a new task-parallel pipeline programming

model is needed for many important industrial and research areas,

e.g., circuit design.

2.1 Pipeline Basics
Pipeline parallelism is commonly used to parallelize various appli-

cations, such as stream processing, video processing, and dataflow

systems. These applications exhibit parallelism in the form of a

linear pipeline, where a linear sequence of abstraction functions,

namely stages, 𝐹 = ⟨𝑓1, 𝑓2, · · · , 𝑓𝑗 ⟩, is applied to an input sequence of
data tokens, 𝐷 = ⟨𝑑1, 𝑑2, · · · , 𝑑𝑖 ⟩. A linear pipeline can be thought

of as a loop over the data tokens of 𝐷 . Each iteration 𝑖 processes

an input token 𝑑𝑖 by applying the stage functions 𝐹 to 𝑑𝑖 in order.

Depending on the number of parallel lines, 𝐿 = ⟨𝑙1, 𝑙2, · · · , 𝑙𝑘 ⟩, to
process data tokens, parallelism arises when iterations overlap in

time. For instance, the execution of token 𝑑𝑖 at stage 𝑓𝑗 of parallel

line 𝑙𝑘 , denoted as 𝑓 𝑘
𝑗
(𝑑𝑖 ), can overlap with 𝑓 𝑘+1

𝑗−1 (𝑑𝑖+1). A stage can

be a parallel type or a serial type to specify whether 𝑓 𝑘
𝑗
(𝑑𝑖 ) can

overlap with 𝑓 𝑘+1
𝑗

(𝑑𝑖+1) or not. Figure 2 shows the dependency

diagram of a 3-stage (serial-serial-parallel) pipeline.
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Figure 2: Dependency diagram of a 3-stage (serial-serial-
parallel) pipeline. Each node represents a task that applies a
stage function to a data token. Each edge represents a depen-
dency between two tasks. The dashed rectangle denotes one
parallel line.

2.2 Task-parallel Pipeline Parallelism
Pipeflow is motivated by our research projects on developing paral-

lel timing analysis algorithms for very large scale integration (VLSI)

computer-aided design (CAD) [17, 18, 20, 21, 25, 26, 75]. Timing anal-

ysis is a critical step in the overall CAD flow because it validates the

timing performance of a digital circuit. As design complexity contin-

ues to grow exponentially, the need to efficiently analyze the timing

has become the major bottleneck to the design closure flow. For

instance, generating a comprehensive timing report (e.g., pessimism

removal, hundreds of corners, etc.) for a multi-million-gate design

can take several hours [45]. To reduce the analysis runtime, there

is an increasing trend of adopting manycore parallelism by new

timing analysis algorithms recently [8, 19, 22, 27, 38–41, 44, 54, 59].
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Figure 3: Parallel timing propagations [34]. Linearly depen-
dent timing data (e.g., slew) is updated across graph nodes in
a task-parallel pipeline fashion.

The most widely used strategy, including commercial timers,

to parallelize timing analysis is pipeline. Figure 3 illustrates this

strategy using forward timing propagation as an example [34]. The

circuit graph is first levelized into a level list using topological sort.

Nodes at the same level are independent of each other and can

run in parallel. Each node runs a sequence of linearly dependent
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propagation tasks, including parasitics (RCP), slew (SLP), delay

(DLP), arrival time (ATP), jump points (JMP), and common path

pessimism reduction (CRP) to update its timing data from a custom
global and application-dependent circuit graph data structure. Dif-

ferent propagation tasks can overlap across different levels using

pipeline parallelism.

This type of task-parallel pipeline strategy is ubiquitous in many

parallel CAD algorithms, such as logic simulation [49, 58] and phys-

ical design [29, 30, 32, 48], because computations frequently flow

through circuit networks. We have observed three important prop-

erties that make mainstream pipeline programming frameworks

fall short of our needs: 1) Unlike the typical data-parallel pipeline,

the pipeline parallelism in many CAD algorithms is driven by tasks
rather than data. 2) Data is not directly involved in the pipeline but

in the graph data structure defined by a custom algorithm. 3) From

a user’s standpoint, the real need is a pipeline scheduling frame-
work to help schedule and run tasks on input tokens across parallel

lines while leaving data management completely to applications;

in our experience, users disfavor another library data abstraction

to perform pipeline scheduling, as it often incurs development

inconvenience and unnecessary data conversion overheads.

3 PIPEFLOW
Inspired by the need for parallel CAD algorithms, Pipeflow intro-

duces a new task-parallel pipeline programming model for users to

create a pipeline scheduling framework without data abstraction.

In this section, we will dive into the technical details of Pipeflow.

3.1 Programming Model
Pipeflow leverages modern C++ and template techniques to strike a

balance between expressiveness and generality. Listing 1 shows the

Pipeflow code that implements the pipeline in Figure 2. Pipeflow

has one API Pipeline that allows users to define the pipeline

structure and explore the pipeline parallelism in their applica-

tions. There are two steps to create a Pipeflow application, 1) de-

fine the pipeline structure using template instantiation using the

Pipeline API and 2) define the application data storage, if needed.

In Pipeflow, the terms “pipe” and “stage” are interchangeable. For

the first step, users define the number of parallel lines and the ab-

stract function of each pipe in a Pipeline object. For each pipe,

users define the pipe type and a pipe callable using Pipe. A pipe

can be either a serial type (PipeType::SERIAL) or a parallel type
(PipeType::PARALLEL). The pipe callable takes an argument of

Pipeflow type, which is created by the scheduler at runtime. A

Pipeflow object pf represents a scheduling token and contains sev-

eral methods for users to query the runtime statistics of that token,

including the parallel line, pipe, and token numbers.

con s t s i z e _ t num_l ines = 4 ;

s t d : : v a r i a n t < f l o a t , s t d : : s t r i n g > da t a _ t ype ;

s t d : : a r ray <da ta_ type , num_l ines > b u f f e r ;

P i p e l i n e p l ( num_l ines ,

/ / F i r s t p ipe

P ipe { PipeType : : SERIAL ,

[& ] ( P i pe f l ow& pf ) {

i f ( ! d a t a . ready ( ) ) {

p f . s t op ( ) ;

} e l s e {

/ / Genera te a f l o a t and save i t i n b u f f e r

b u f f e r [ p f . l i n e ( ) ] = da t a . g e t ( ) ;

}

}

} ,

/ / Second p ipe

P ipe { PipeType : : SERIAL ,

[& ] ( P i pe f l ow& pf ) {

/ / Genera te a s t r i n g and save i t i n b u f f e r

b u f f e r [ p f . l i n e ( ) ] =

make_s t r ing ( s t d : : get <0 >( b u f f e r [ p f . l i n e ( ) ] ) ) ;

}

} ,

/ / Th i rd p ipe

P ipe { PipeType : : PARALLEL ,

[& ] ( P i pe f l ow& pf ) {

s t d : : cou t << s t d : : get <1 >( b u f f e r [ p f . l i n e ( ) ] ) ;

}

}

) ;

p l . run ( ) ;

Listing 1: Pipeflow code of Figure 2, assuming the first pipe
generates float and the second pipe generates string out-
puts.

Pipeflow does not have any data abstraction but gives applica-

tions full control over data management. In our example, since the

first and the second pipes generate float and std::string out-

puts, respectively, we create a one-dimensional (1D) array, buffer,
as the application data storage to store data in uniform storage

using std::variant<float, std::string>. The dimension of

the array is equal to the number of parallel lines, as Pipeflow sched-

ules only one token per parallel line. Each entry buffer[i] stores

the data that is being processed at parallel line 𝑖 , which can be

retrieved by Pipeflow::line. This organization is space-efficient

because we use only a 1D array to represent data processing in a

two-dimensional (2D) scheduling map. Additionally, by delegating

data management to applications, we can avoid dynamic data con-

version between the library and the application, which typically

counts on virtual function calls to convert a generic type (e.g., void*,
std::any) to an arbitrary user type [1, 4].

Based on the pipeline structure and data layout defined above,

we instantiate a Pipeline object, pl. This template-based design

enables the compiler to optimize each pipe type, such as using

a fixed-layout functor to store the callable and its captured data.

Finally, we call run to submit the object pl to a runtime and execute

it.

us ing P = Pipe < s t d : : f un c t i on <vo id ( P i pe f l ow &) > >;

s t d : : v e c to r <P> p ( 6 , c r e a t e _ p i p e ( ) ) ; / / 6 p i p e s

/ / P i p e l i n e o f 4 p a r a l l e l l i n e s and 6 p i p e s

S c a l a b l e P i p e l i n e p l ( 4 , p . beg in ( ) , p . end ( ) ) ;

p l . run ( ) ; / / F i r s t run

p . r e s i z e ( 3 ) ; / / R e s i z e p to 3 p i p e s

/ / P i p e l i n e o f 4 p a r a l l e l l i n e s and 3 p i p e s

p l . r e s e t ( p . beg in ( ) , p . end ( ) ) ;

p l . run ( ) ; / / Second run

Listing 2: Scalable pipeline model in Pipeflow to accept vari-
able assignments of pipes.

Pipeline requires instantiation of all pipes at the construction

time. While this design gives compilers more freedom to optimize

the layout of each pipe type, it prevents applications from varying

the pipeline structure at runtime; for instance, the number of pipes

might depend on the problem size, which can be runtime variables.

To overcome this limitation, Pipeflow provides a scalable alternative,

ScalablePipeline, to allow variable assignments of pipes using
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range iterators. In Listing 2, we create a scalable pipeline, pl, from a

vector of six pipes p. After the first run, we reset pl to another range
of three pipes for the second run. A scalable pipeline is thus more

flexible for applications to create a pipeline scheduling framework

with dynamic structures.

Compared to the programming model of existing frameworks,

such as oneTBB [1], Pipeflow’s programming model has the follow-

ing advantages: 1) Pipeflow is expressive and easy to write. Users

only need pipe type, pipe callable, and the number of parallel lines

to create a pipeline scheduling framework and explore the pipeline

parallelism in their applications. Moreover, as Pipeflow does not

provide data abstraction, users do not need to explicitly specify

the input data and output data type at every pipe definition as

oneTBB’s users do. 2) Pipeflow is flexible. Users are able to modify

the pipeline structure at runtime based on their specific needs.

3.2 Scheduling Algorithm

token (4t+0) on  

pipe 0, line 0

token (4t+0) on 

pipe 2, line 0

token (4t+0) on 

pipe 1, line 0

token (4t+1) on 

pipe 0, line 1

token (4t1) on 

pipe 1, line 1

token (4t+1) on 

pipe 2, line 1

token (4t+2) on 

pipe 0, line 2

token (4t+2) on 

pipe 1, line 2

token (4t+2) on 

pipe 2, line 2

token (4t+3) on 

pipe 0, line 3

token (4t+3) on 

pipe 1, line 3

token (4t+3) on 

pipe 2, line 3

Figure 4: The scheduling diagram of the task-parallel
pipeline in Listing 1. Each parallel line runs one schedul-
ing token. Multiple parallel lines overlap tokens in a circular
fashion. The text “token (4t+1) on pipe 1, line 1” means the
token with ID 4t+1 runs on the pipe 1 and the parallel line 1.

As Pipeflow does not touch data abstraction, we can simplify the

pipeline scheduling problem to decide which scheduling token to

run at which pipe and parallel line. Our scheduling algorithm places

only one scheduling token per parallel line. We then process all

tokens in a circular fashion across the given number of parallel lines.

Figure 4 illustrates our pipeline scheduling idea using the pipeline

in Listing 1. Since the pipeline schedules tokens in a circular fashion,

there are four edges (dependencies) from the last pipes (pipe 2) to
the first pipes (pipe 0), and one edge from the first pipe of the last

parallel line to the first pipe of the first parallel line. The last pipe

(pipe 2) is a parallel type. There is no vertical edge between the last
pipes of two consecutive parallel lines. Each parallel line runs only

one scheduling token. Multiple parallel lines can overlap tokens

whenever their dependencies are met. Even though the pipeline

execution can involve many scheduling tokens, only four parallel

lines are used in total.

3.3 Pseudocode

Algorithm 1: define_task(𝑙 )
global: 𝑝𝑖𝑝𝑒 𝑓 𝑙𝑜𝑤𝑠: a vector of Pipeflow objects

global: 𝑗𝑜𝑖𝑛_𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠: a 2D array of join counters

global: 𝑛𝑢𝑚_𝑡𝑜𝑘𝑒𝑛𝑠: the number of tokens

global: 𝑛𝑢𝑚_𝑙𝑖𝑛𝑒𝑠: the number of parallel lines

global: 𝑛𝑢𝑚_𝑝𝑖𝑝𝑒𝑠: the number of pipes

Input: 𝑙 : a parallel line id
1 𝑝𝑓 ← 𝑝𝑖𝑝𝑒 𝑓 𝑙𝑜𝑤𝑠 [𝑙];
2 AtomicStore( 𝑗𝑜𝑖𝑛_𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠 [𝑝𝑓 .𝑙𝑖𝑛𝑒] [𝑝 𝑓 .𝑝𝑖𝑝𝑒], 𝑝 𝑓 . 𝑗𝑜𝑖𝑛_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 );

3 if 𝑝 𝑓 .𝑝𝑖𝑝𝑒 == 0 then
4 𝑝𝑓 .𝑡𝑜𝑘𝑒𝑛 ← 𝑛𝑢𝑚_𝑡𝑜𝑘𝑒𝑛𝑠;

5 invoke_pipe_callable(𝑝 𝑓 );

6 if 𝑝 𝑓 .𝑠𝑡𝑜𝑝 == True then
7 return;
8 end
9 𝑛𝑢𝑚_𝑡𝑜𝑘𝑒𝑛𝑠 = 𝑛𝑢𝑚_𝑡𝑜𝑘𝑒𝑛𝑠 + 1;

10 end
11 if 𝑝 𝑓 .𝑝𝑖𝑝𝑒 != 0 then
12 invoke_pipe_callable(𝑝 𝑓 );

13 end
14 𝑐𝑢𝑟𝑟_𝑝𝑖𝑝𝑒 ← 𝑝𝑓 .𝑝𝑖𝑝𝑒;

15 𝑛𝑒𝑥𝑡_𝑝𝑖𝑝𝑒 ← (𝑝 𝑓 .𝑝𝑖𝑝𝑒 + 1)%𝑛𝑢𝑚_𝑝𝑖𝑝𝑒𝑠;

16 𝑛𝑒𝑥𝑡_𝑙𝑖𝑛𝑒 ← (𝑝 𝑓 .𝑙𝑖𝑛𝑒 + 1)%𝑛𝑢𝑚_𝑙𝑖𝑛𝑒𝑠 ;

17 𝑝𝑓 .𝑝𝑖𝑝𝑒 ← 𝑛𝑒𝑥𝑡_𝑝𝑖𝑝𝑒;

18 𝑛𝑒𝑥𝑡_𝑡𝑎𝑠𝑘𝑠 = {};
19 if 𝑐𝑢𝑟𝑟_𝑝𝑖𝑝𝑒 is SERIAL and

AtomicDecrement( 𝑗𝑜𝑢𝑛_𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠 [𝑛𝑒𝑥𝑡_𝑙𝑖𝑛𝑒] [𝑐𝑢𝑟𝑟_𝑝𝑖𝑝𝑒]) ==
0 then

20 𝑛𝑒𝑥𝑡_𝑡𝑎𝑠𝑘𝑠 .insert(1);

21 end
22 if

AtomicDecrement( 𝑗𝑜𝑖𝑛_𝑐𝑜𝑢𝑛𝑡𝑒𝑟𝑠 [𝑝 𝑓 .𝑙𝑖𝑛𝑒] [𝑛𝑒𝑥𝑡_𝑝𝑖𝑝𝑒]) ==
0 then

23 𝑛𝑒𝑥𝑡_𝑡𝑎𝑠𝑘𝑠 .insert(0);

24 end
25 if next_tasks.𝑠𝑖𝑧𝑒 == 2 then
26 call_scheduler(𝑡𝑎𝑠𝑘_𝑜 𝑓 _𝑛𝑒𝑥𝑡_𝑙𝑖𝑛𝑒);

27 goto Line 2;

28 end
29 if next_tasks.𝑠𝑖𝑧𝑒 == 1 then
30 if next_tasks[0] == 1 then
31 𝑝𝑓 ← 𝑝𝑖𝑝𝑒 𝑓 𝑙𝑜𝑤𝑠 [𝑛𝑒𝑥𝑡_𝑙𝑖𝑛𝑒];
32 end
33 goto Line 2;

34 end

Based on the idea discussed in Section 3.2, we formulate each

parallel line as a task, which defines a function object to run by a
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thread in the thread pool. Each task 1) deals with one scheduling

token per parallel line and 2) decides which adjacent task to run on

its next parallel line and pipe. Algorithm 1 implements such a task

using efficient atomic operations. When a task is scheduled, we

need to know which pipe at which parallel line for the scheduling

token to work. We keep the parallel line and pipe information in a

Pipeflow object. Each task owns a Pipeflow object pf of a specific
parallel line (line 1). Once a scheduling token is done, there are two

cases for its corresponding task to proceed: 1) for a parallel type, the

task moves to the next pipe at the same parallel line; 2) for a serial

type, the task additionally checks if it can move to the next parallel

line. To carry out such a dependency constraint, each pipe keeps a

join counter of an atomic integer to represent its dependency value.

The values of a serial pipe and a parallel pipe can be up to 2 and 1,

respectively. We create a 2D array join_counters to store the join
counter of each pipe at each parallel line. Line 2 initializes these join

counters to either 2 or 1 based on the corresponding pipe types that

are enumerated on integer constants, 2 (serial) and 1 (parallel). At

the first pipe (line 3), the Pipeflow object updates its token number

(line 4) and checks if the pipe callable requests to stop the pipeline

(lines 5:8). If continued, we increment the number of scheduled

tokens by one (line 9). For other pipes, we simply invoke the pipe

callables (lines 11:13).

After the pipe callable returns, we update the join counters based

on the pipe type and determine the next possible tasks to run (lines

14:24). When the join counter of a pipe becomes 0, we bookmark

this pipe as a task to run next (line 20 and line 23). If two tasks exist

(line 25), the current task informs the scheduler to call a worker

thread to run the task at the next parallel line (line 26) and reiterates

itself on the next pipe (line 27). The idea here is to facilitate data

locality as applications tend to deal with the next pipe at the same

parallel line as soon as possible. If there is only one task available,

the current task directly runs the next task with the updated pf
object (lines 29:34).

Compared to existing algorithms, such as oneTBB [1], that count

on non-trivial synchronization between tasks and internal data

buffers, our algorithm focuses on the task parallelism of a pipeline

itself. This design largely reduces the scheduling complexity of

pipeline by using lightweight atomic operations without complex

data buffer management.

3.4 Proof
We draw the following lemmas and sketch their proofs to highlight

the correctness of our scheduling algorithm:

Lemma 1. Only one task runs a pipe callable (line 5 and line 12 in
Algorithm 1) on a scheduling token.

Proof. Assume two tasks are running the same pipe callable,

which means one task reiterates its execution from the previous

pipe, and the other task comes from the previous parallel line. This

is not possible in a parallel pipe as there is no dependency from the

previous parallel line; only one runtime task decrements the join

counter to 0 (line 22 in Algorithm 1). Take Figure 4 for example.

There is no vertical edge pointing to token 4t+1 from token 4t+0
for pipe 2. Only the task that runs token 4t+1 on pipe 1 gets to

decrement the join counter for task 4t+1 on pipe 2. In a serial pipe,

this is also not possible because the dependency is resolved using

atomic operations; only one task will acquire the zero value of the

join counter (line 19 in Algorithm 1). For example, in Figure 4, either

the task running token 4t+0 on pipe 1 or the task running token

4t+1 on pipe 0 decrements token 4t+1 on pipe 1 to zero and then

runs the pipe. □

Lemma 2. The scheduler does not miss any pipe.

Proof. We consider the situation where one task moves to the

next parallel line (line 31 in Algorithm 1) instead of the next pipe

at the same parallel line. Under this circumstance, we need to make

sure one task will run that next pipe. Take Figure 4 for example.

Suppose a task finishes token 4t+1 at pipe 0 and precedes to token

4t+2 at pipe 0, meaning that the join counter of token 4t+1 at

pipe 1 is not 0 yet. Another task that works on token 4t+0 at pipe

1 will eventually decrement the join counter to run it (line 27 in

Algorithm 1) or invoke another worker thread to run it (line 26 in

Algorithm 1). □

4 EXPERIMENTAL RESULTS
We implemented Pipeflow using C++17 and evaluated the perfor-

mance of Pipeflow on a micro-benchmark and a real-world indus-

trial CAD application. We studied the performance across mem-

ory (RSS), runtime, and throughput. We did not use conventional

pipeline benchmarks (e.g., PARSEC’s ferret[5] has only six pipes,

loading, segmentation, extraction, indexing, ranking, and output)

as their problem sizes are relatively small compared to CAD, and

the runtime difference between Pipeflow and the baseline is not

obvious on small pipelines. We compiled all programs using g++12

with -std=c++17 and -O3 enabled. We ran all the experiments on

a Ubuntu Linux 19.10 (Eoan Ermine) machine with 40 Intel Xeon

Gold 6138 CPU cores at 2.00 GHz and 256 GB RAM. All data is an

average of ten runs.

4.1 Baseline
Given a large number of pipeline programming frameworks, it

is infeasible to compare Pipeflow with all of them. We consid-

ered oneTBB [1] as our baseline for two reasons. First, oneTBB

is the only library that provides a single pipeline API for users

to explore pipeline parallelism. Others require combining several

library-specific constructs to achieve this goal. For example, in Cilk-

P users need pipe_while, pipe_stage, and pipe_stage_wait to
add pipeline parallelism in applications. Second, Pipeflow is in-

spired by our CAD applications, and oneTBB is widely used in the

CAD community due to its absolute speed and robustness. For a

fair comparison, we implemented the same work-stealing strategy

as oneTBB in our thread pool, in particular, call_scheduler in

line 26 in Algorithm 1.

4.2 Micro-benchmark
The purpose of micro-benchmarks is to measure the pure sched-

uling performance without much computation bias from applica-

tions. We compared the memory, runtime, and throughput between

Pipeflow and oneTBB for completing pipelines of different numbers

of serial pipes, scheduling tokens, and threads. We did not use par-

allel pipes as their callable can be absorbed into the previous serial
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pipe. Each pipe performs a nominal work of constant space and

time complexity (e.g., small matrix multiplications) and forwards a

scheduling token to the next pipe.

Figure 5 illustrates the maximum RSS between Pipeflow and

oneTBB with different scheduling tokens and threads. The number

of parallel lines and pipes of a pipeline is equal to the number of

threads. We can see that oneTBB starts to consume more memory

than Pipeflow as we increase the pipeline size. For example, with 2
10

scheduling tokens Pipeflow needs 1.97% and 11.68% less memory

than oneTBB when running with 16 and 64 threads, respectively.

The same trend is also observed in the plot of processing 2
15

sched-

uling tokens. In terms of memory usage, oneTBB is consistently

higher than Pipeflow (e.g., 97.72% higher with 64 threads and 2
15

scheduling tokens) because we do not manage any data buffers but

focus on the task scheduling itself. That is, oneTBB needs to allo-

cate space for its internal data buffer structures to perform pipeline

scheduling. We can see the overhead of using data abstractions in

pipeline scheduling next.

Figure 5: Maximum RSS comparison between Pipeflow and
oneTBBwith different threads and two scheduling tokens (210

and 2
15) for the micro-benchmark. The number of threads is

the same as the number of pipes in the pipeline.

Figure 6 draws the runtime comparisons between Pipeflow and

oneTBB under different scheduling tokens and thread counts. The

number of parallel lines and pipes of a pipeline is equal to the num-

ber of threads. We can see that the runtime gap between Pipeflow

and oneTBB starts to increase as we increase the pipeline size. For

example, at 2
15

scheduling tokens Pipeflow runs 10.13%, 10.98%,

124.18%, and 201.38% faster than oneTBB with 8, 16, 64, and 80

threads, respectively. Furthermore, Pipeflow has better runtime

performance than oneTBB in all situations. We attribute the per-

formance improvements of Pipeflow over oneTBB to the reason

that oneTBB relies on its internal data buffer to perform pipeline

scheduling while Pipeflow only uses lightweight atomic operations.

Moreover, as the number of threads is equal to the number of par-

allel lines and pipes in the experiment, the pipeline running with

80 threads has a bigger structure than the pipeline running with 8

threads. As a result, the former pipeline exhibits higher task sched-

uling overhead than the latter and thus spends more time to finish.

Although the micro-benchmark only demonstrates the pure sched-

uling performance and forwards the scheduling token between

pipes, the overhead of data abstraction design of oneTBB results in

a significant runtime difference, especially in a large pipeline.

Figure 7 compares the throughput by corunning the same pro-

gram up to 8 times. Corunning a program at different configurations

is very common in some applications, such as [45]. The experiment

emulates a server-like environment where different pipeline ap-

plications compete for the same resources. We use the weighted

speedup to measure the system throughput, which is the sum of

the individual speedup of each process over a baseline execution

time[14]. A throughput of one implies that the corun throughput is

the same as if those processes run consecutively. On the left plot, the

pipeline has 16 pipes and 16 parallel lines and runs with 16 threads.

On the right plot, the pipeline has 80 pipes and 80 parallel lines and

runs with 80 threads. Both of them run 2
15

scheduling tokens. We

can see that Pipeflow outperforms oneTBB in all coruns. For exam-

ple, at 8 coruns Pipeflow is 1.2x and 3.31x better than oneTBB with

16 and 80 pipes, respectively. Besides, Pipeflow remains around one

up to 5 coruns while oneTBB decreases after 2 coruns. We attribute

the finding to the reason that we use lightweight atomic opera-

tions rather than complex data buffer synchronizations to do the

task scheduling. As Pipeflow is more lightweight than oneTBB in

pipeline scheduling, corunning Pipeflow thus has better throughput

than corunning oneTBB.

The above experiments were running with the configuration in

which the number of pipes is the same as the number of threads.

However, this configuration does not always guarantee the best

runtime performance because of different applications and hard-

ware environments. Next, we see how the number of threads could

impact the performance. Figure 8 shows the impact of Pipeflow and

oneTBB running with different numbers of threads in a small (16

pipes) and a big (80 pipes) pipeline in which 2
10

and 2
15

tokens

were scheduled. For 16 pipes, we can see that the runtime trends

of running 2
10

and 2
15

are similar. oneTBB has the best runtime

performance with 32 threads; Pipeflow has the best performance

at 16 threads. For 80 pipes, the runtime trends are the same. We

find out that Pipeflow has the best performance with 80 threads

while oneTBB with 32 threads. In this micro-benchmark, we know

the selection of identical pipes and threads is the best option for

Pipeflow but not for oneTBB. Selecting the best thread number is

an important factor and the best thread number for one application

may not be the best choice for another application.

4.3 VLSI Static Timing Analysis Algorithm
We applied Pipeflow to solve a large-scale VLSI static timing analy-

sis (STA) problem. The goal is to analyze the timing landscape of a
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Figure 6: Runtime comparison between Pipeflow and oneTBB
with different scheduling tokens and threads for the micro-
benchmark. The number of threads is the same as the number
of pipes in the pipeline.

circuit design and report critical paths that do not meet the given

constraints (e.g., setup and hold). As presented in Figure 3, modern

STA engines leverage pipeline parallelism to speed up the timing

propagations. However, nearly all of them count on OpenMP-based

loop parallelism with layer-by-layer synchronization [34]. With

Pipeflow, we can directly formulate the problem as a task-parallel

Figure 7: Throughput of corunning micro-benchmark pro-
grams with 16 and 80 pipes and 2

15 scheduling tokens.

pipeline to improve task asynchrony. As the analysis complexity

continues to increase, more analysis tasks (e.g., RC, delay calcula-

tors, pessimism reduction) are incorporated into each node in the

STA graph. These tasks can be encapsulated in a sequence of pipe

functions to overlap in the graph across parallel lines. We modified

a large circuit design of 1.5M nodes and 3.5M edges from [3, 34] and

studied the performance under different pipe counts. Each node

has a pipe task to calculate delay values at a specific configuration

using linear interpolation. We levelized the STA graph and ran

the nodes at the same level in parallel, such that different analysis

tasks overlaps across different levels using pipeline parallelism, as

illustrated in Figure 3.

Figure 9 evaluates the memory usage between Pipeflow and

oneTBB at different graph sizes (∥𝑉 ∥ + ∥𝐸∥) and thread counts.

The number of pipes and lines in the pipeline is identical to the

number of threads. As the pipeline size grows, the gap of memory

usage starts to increase in both 1.5M and 5M graph sizes. For in-

stance, with 1.5M graph size Pipeflow needs 0.07% and 5.6% less

than oneTBB at 32 and 80 threads, respectively. We can observe a

similar trend when we process 5M graph size. Since Pipeflow dele-

gates data management directly to applications without touching

data abstractions, Pipeflow does not allocate as much memory as

oneTBB to perform pipeline scheduling.

Figure 10 compares the runtime performance between Pipeflow

and oneTBB at different graph sizes (∥𝑉 ∥ + ∥𝐸∥) and thread counts.

The number of pipes and parallel lines of the pipeline is the same as

the number of threads in this experiment. We can see that Pipeflow

outperforms oneTBB when we increase the graph size. Taking

16 threads for example, Pipeflow runs 62.02%, 57.44%, and 46.08%

faster than oneTBB with 1, 3, and 5M graph size, respectively. The

performance improvements reduce because the overhead of setting
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Figure 8: Impacts of selecting the number of threads on the
runtime performance for the micro-benchmark. The num-
ber of pipes is not identical to the number of threads. The
numbers of pipes are 16 and 80. The pipeline processes 210

and 2
15 scheduling tokens.

up internal data buffers in oneTBB is gradually amortized when

we increase the graph size in this workload. We also notice the

runtime gap decreases when we use more threads. For example,

at 5M graph size Pipeflow is 110.33%, 46.08%, and 20.08% faster

with 8, 16, and 64 threads, respectively. The improvements also

Figure 9: Maximum RSS comparison between Pipeflow and
oneTBB at different graph sizes (∥𝑉 ∥ + ∥𝐸∥) and thread counts
for the timing analysis workload. The number of threads is
identical to the number of pipes in the pipeline.

reduce because the cost of data buffers is amortized gradually as the

pipeline size grows. Despite the runtime improvements gradually

decrease when the pipeline size grows or the graph size increases,

Pipeflow still outperforms oneTBB in all cases in the workload.

Since our scheduling algorithm does not deal with data passing

between pipes, we can process scheduling tokens more efficiently

than oneTBB. In Pipeflow all pipe tasks perform computations

directly on a global graph data structure captured in the pipe callable

instead of passing data between successive pipes using buffers. The

data passing interface between successive pipes in oneTBB thus

becomes an unnecessary overhead.

Next, we compare the throughput by corunning the same pro-

gram up to 8 times. Corunning the STA program is very common

for reporting the timing data of a design at different input library

files[45]. The effect of pipeline scheduling propagates to all simul-

taneous processes. Hence, throughput is a good measurement for

the inter-operability of a pipeline-based STA algorithm. We corun

the same analysis program up to 8 processes that compete for 40

cores. Again, we use the weighted speedup to measure the through-

put. Figure 11 plots the throughput across 8 coruns at 16 and 80

pipes. The number of pipes is identical to the number of threads.

We can see that Pipeflow outperforms oneTBB at all coruns. For

instance, at 8 coruns Pipeflow is 1.04x and 1.14x better than oneTBB

with 16 and 80 pipes, respectively. This is because Pipeflow lever-

ages lightweight atomic operations and oneTBB relies on complex
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Figure 10: Runtime comparison between Pipeflow and
oneTBB at different graph sizes (∥𝑉 ∥ + ∥𝐸∥) and thread counts
for the timing analysis workload. The number of threads is
identical to the number of pipes in the pipeline.

data buffer management in pipeline scheduling. Corunning a light-

weight program has a higher throughput than corunning a heavy

program. Besides, with more coruns both Pipeflow and oneTBB

have a decreasing throughput.

Figure 11: Throughput of corunning STA programs with 16
and 80 pipes and 1.5M graph size(∥𝑉 ∥ + ∥𝐸∥).

So far, we ran the experiments of this workload using the number

of threads same as the number of pipes. This configuration may

not always give us the best runtime performance because of differ-

ent hardware environment and workloads. Next, we demonstrate

the importance of selecting the number of threads in this work-

load. Figure 12 shows the runtime performance of Pipeflow and

oneTBB processing 1.5M and 5M graph size with different numbers

of threads in 16-pipe and 80-pipe pipelines. For 16 pipes, we ob-

serve that both Pipeflow and oneTBB have a similar runtime trend,

and both achieve the best performance with 64 threads for 1.5M

graph size. With 5M graph size Pipeflow has the best performance

with 80 threads while oneTBB with 64 threads. For 80 pipes, both

Pipeflow and oneTBB have the best performance with 32 threads.

From Figure 12 we learn that the alignment of threads and pipes

does not achieve the best runtime performance in the workload.

Hence, selecting the thread counts is an important factor while

exploring pipeline parallelism in applications.

4.4 Importance of Task-Parallel Pipeline
As experienced parallel CAD researchers, Pipeflow has assisted

us in overcoming many programming challenges. For example, in

the previous experiments, the data is explicitly managed by the

application algorithms and there is no need to go through any data

abstraction. The real need is a task-parallel pipeline programming

framework that 1) gives applications full control over data and

2) allows applications to probe each scheduled task. For instance,

when implementing the STA algorithm, we captured the data from

a global STA graph structure in each pipe callable and used the
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Figure 12: Impacts of selecting the number of threads on the
runtime performance for the timing analysis workload. The
number of pipes is not identical to the number of threads. The
numbers of pipes are 16 and 80. The graph sizes (∥𝑉 ∥ + ∥𝐸∥)
are 1.5M and 5M.

pipeflow variable to get the parallel line number of a scheduled

task to index the corresponding entry in a result vector. However,

oneTBB abstracts these components out, and we have to implement

another mapping strategy to get these data from each filter, both of

which incur significant yet unnecessary runtime overheads. Similar

situations exist in other libraries too.

4.5 Selection of the Number of Parallel Lines
Selecting the number of parallel lines (or threads) for the best per-

formance is application-dependent. For example, Figure 8 illustrates

that Pipeflow obtains the best performance while aligning the pipe

sizes and thread counts and oneTBB should run with 32 threads in

the micro-benchmark. From Figure 12 when running the STA work-

load, both Pipeflow and oneTBB obtain the best runtime results

with 32 threads in an 80-pipe pipeline. From the micro-benchmark

and STA algorithm, we learn that the selection of the number of

parallel lines (or threads) is a critical factor regarding the runtime

performance. Moreover, as the performance of an application tends

to saturate or peak at a certain limit, increasing the number of

parallel lines exceeds the limit could negatively affect the runtime.

As a result, Pipeflow makes the number of parallel lines a tunable

parameter (similarly in oneTBB). Based on our experience, most

applications can obtain decent performance when the number of

parallel lines is equal to the number or twice the number of the

cores.

5 RELATEDWORK
Pipeline programming models. have received intensive research

interest. Most of them are data-centric, using static template instan-

tiation or dynamic runtime polymorphism to model data processing

in a pipeline. To name a few popular examples: oneTBB [1] and

TPL [51] require explicit definitions of input and output types for

each stage; GrPPI [13] provides a composable abstraction for data-

and stream-parallel patterns with a pluggable back-end to support

task scheduling; FastFlow [4] models parallel dataflow using pre-

defined sequential and parallel building blocks; TTG [7] focuses on

dataflow programming using various template optimization tech-

niques; SPar [15, 16, 24, 60] analyzes annotated attributes extracted

from the data and stream parallelism domain, and automatically

generates parallel patterns defined in FastFlow; Proteas [61] in-

troduces a programming model for directive-based parallelization

of linear pipeline; [73, 74] propose a self-adaptive mechanism to

decide the degree of parallelism and generate the pattern compo-

sitions in FastFlow; OpenMP [2] uses task construct and depend

clause to explore pipeline parallelism. Although these program-

ming models are used in many applications, such as oneTBB in

PARSEC [5], they constrain users to design pipeline algorithms

using their data models, making it difficult to use, especially for

applications that only need pipeline scheduling atop custom data

structures. Pipeflow simply requires users to specify the pipeline

structures (e.g., the number of parallel lines) and pipe callables,

and provides a scalable pipeline API for users to flexibly define the

pipeline scheduling frameworks with dynamic structures based on

their specific needs.

Existing pipeline scheduling algorithms. typically co-design task

scheduling and buffer structures to strive for the best performance.

For instance, oneTBB [1] defines a per-stage buffer counter to syn-

chronize data tokens among stages and parallel lines, coupled with

a small object allocator to minimize the data allocation overhead;

GRAMPS [70] designs a buffer manager with per-thread fix-sized

memory pools to dynamically allocate new data and release used

ones; FastFlow [4] designs a lock-free queue with a mechanism

to transfer data ownership between senders and receivers, but
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this method can incur imbalanced load and requires non-trivial

back-pressure management; HPX [46] counts on a channel data

structure and standard future objects to pass data around tasks, but

the creation of share states becomes expensive when the pipeline

is large; Cilk-P [50] employs per-stage queues coupled with two

counter types to track static and dynamic dependencies of each

node, but it targets on-the-fly pipeline parallelism, which is orthog-

onal to our focus; FDP [72] proposes a learning-based mechanism

to adapt scheduling to an environment, but it requires expensive

runtime profiling that may not work well for highly irregular ap-

plications like CAD. Pipeflow leverages C++ simple atomic op-

erations and assigns every pipe an atomic variable denoting the

dependency. Since there is no data synchronization involved, the

scheduling algorithm of Pipeflow is lightweight and efficient. In

terms of load balancing, most pipeline schedulers leverage work

stealing, which has been reported with better performance than

static policies [6, 23, 50, 52, 66, 70, 71]. However, for some special

cases, such as fine-grained load-imbalanced pipelines, static policies

perform comparably. For example, Pipelight [64, 65] implements a

load-balancing technique based on two static scheduling algorithms,

DSWP [67–69] and LBPP [47]; Pipelite [63, 65] and URTS [62, 65]

introduce dynamic schedulers using ticket-based synchronization

and directive-based model language for linear pipelines, respec-

tively. Although, in some special cases, work stealing [53] may not

give the best runtime performance, Pipeflow and the most frame-

works still adopt this algorithm as it has the best performance in

most applications. While co-designing task scheduling and buffer

structures has certain advantages for data-centric pipeline (e.g., data

locality), the cost of managing data can be significant yet unneces-

sary, especially for applications that only exploit task parallelism

in pipeline.

6 CONCLUSION
In this paper, we have introduced Pipeflow, an efficient task-parallel

pipeline programming framework to explore pipeline parallelism

in applications. We have introduced a simple yet efficient schedul-

ing algorithm based on our work-stealing runtime with dynamic

load balancing. We have evaluated the performance of Pipeflow

on a micro-benchmark and an industrial application. For exam-

ple, in a VLSI static timing analysis workload that adopts pipeline

parallelism to speed up the runtime performance, the Pipeflow’s

implementation is up to 110.33% faster than the oneTBB’s imple-

mentation. Our future plans are to 1) apply Pipeflow to other ap-

plications than CAD applications to bring interdisciplinary ideas

to the parallel computing community and 2) extend Pipeflow to

task-parallel GPU computing platforms [11, 12, 43, 55–57] and dis-

tributed environment [28, 31, 42]
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