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Abstract—The incessant decrease in transistor size has led to
reduced voltage noise margins and exacerbated power integrity
challenges. This trend intensifies concerns about the efficacy of
conventional static timing analysis (STA), which traditionally
assumes a constant power supply level, often resulting in im-
precise and overly conservative outcomes. To address this, this
paper proposes a dynamic-noise-aware STA engine enhanced
by just-in-time (JIT) machine learning (ML) integration. This
approach employs the Weibull cumulative distribution function
to accurately represent dynamic power supply noise (PSN). We
perform gate-level characterization, assessing delay and transi-
tion time for each timing arc under variations in input transition
time, output capacitance, and three PSN-aware parameters.
The timing for each timing arc can then be predicted by a
multilayer perceptron (MLP), trained with the characterization
data. Finally, by incorporating JIT compilation techniques, we
integrate trained MLP models into the STA engine, achieving
both computational efficiency and flexibility. Experimental results
show that the proposed method can accurately estimate the
timing fluctuation due to dynamic PSN, with an average relative
error of 4.89% for single-cell estimations and 6.27% for path
delay estimations.

I. INTRODUCTION

W ITH a scaling supply voltage and a continuously
increasing current density, the gap between the op-

erating voltage and the threshold voltage is narrowing. The
circuit performance is then more susceptible to supply voltage
fluctuation. Power supply noise (PSN) refers to the undesired
fluctuations or variations in the voltage level of the power
supply [1]. This type of noise can be categorized into two main
types: IR drop and Ldi/dt noise. IR drop refers to the low-
frequency component of PSN, which results from current and
resistance in the power delivery network (PDN). The scaling
of interconnects leads to an increase in resistance and thus
a more severe IR drop [2]. Additionally, the increased speed
transients allowed by scaled transistor size result in higher
Ldi/dt noise due to the large parasitic inductance in the
package and on-chip components [3]. These factors contribute
to more complex power integrity issues that must be taken
into consideration during circuit design and analysis to prevent
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unfavorable margins and identify optimization opportunities
[4].

Static timing analysis (STA) is a technique used to validate
the timing performance of a design by evaluating all possible
paths for timing violations. The process involves breaking
down the circuit into timing paths, modeling the delay of
each timing arc, calculating the delay for each timing path,
checking for timing violations, and optimizing the circuit.
Each timing path in STA consists of several nets, vias, and
functional models. The most basic cell of a timing path is
called timing arc, which represents the timing relationship
between two pins of any element. The accuracy of STA is
dependent on the method used to model the delay of timing
arcs. The most common approach is the look-up table (LUT)
algorithm. During library characterization, several delays with
different input transition times and load capacitance values are
calculated by dynamic simulation. The values are then stored
in a delay table. During the STA process, the STA engine
uses interpolation or extrapolation of the table values to obtain
the delay value for the current condition. The LUT algorithm
provides an accurate and efficient way to model the delay
of timing arcs in STA, and it is widely used in the industry
for timing analysis. However, this algorithm assumes that the
delay of timing arcs is independent of other circuit contexts,
regardless of the input transition time and load capacitance
value. This assumption ignores the potential impact of PSN
and other noise. As the impact of noise on timing becomes
increasingly apparent, the development of a model that can
accurately capture the impact of noise on timing is essential.

The impact of PSN on timing has been studied extensively
for many years. Conventionally, the PSN is estimated by
annotating static voltage drops at each instance. Jiang et
al. proposed a statistical modeling technique for PSN and
integrated it with a statistical STA framework to estimate
performance degradation [5]. Kim et al. proposed a vectorless
approach to estimate the delay increase due to PSN by sensi-
tizing the longest paths in the circuit [6]. Krstic et al. proposed
a pattern generation technique to capture the impact of PSN
on delay [7]. Hashimoto et al. replaced temporal PSN with its
equivalent power/ground voltage and setup a PSN-aware STA
algorithm [8]. [9] further analyzed the relationship between
the equivalent voltage of PSN and timing performance, and
established a more accurate model. In dynamic timing analysis
(DTA), researchers have leveraged machine learning (ML)
techniques to assess the impact of PSN on timing. Ye et al.
introduced a support-vector-machine-based regression method
to accurately predict voltage drop due to pattern-dependent
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IR drop based on inputs to the chip at runtime [10]. Liu
et al. proposed a set of four features to effectively reduce
the dimensionality of input vectors. They further compared
the performance of three distinct ML models trained with
these features for PSN-aware dynamic timing prediction [11].
Garyfallou et al. developed a framework based on event-
driven timing simulation that identifies the underestimated
dynamic timing slack and achieved significant improvements
over conventional graph-based methods [12].

Static voltage drop estimations have been sufficient for
earlier technology nodes where there is a sufficient amount of
natural decoupling capacitance from the PDN [13]. However,
their assumption of average PSN ignores the specific noise
waveform shapes, which becomes a severe problem given the
increasingly sharp PSN curves. PSN in advanced nodes usually
comes in a burst due to the simultaneous switching activities
of large amounts of instances. Due to the inability to model
dynamic noise, the accuracy of the previous methods decreases
as the node becomes more advanced.

To model the dynamic noise, accurate analysis of the
noise waveform itself is required, which has used to be a
computationally expensive task. Dynamic PSN-aware timing
analysis relies heavily on the accuracy of the noise waveform
analysis since the accuracy of the delay calculation directly
depends on the accuracy of the noise estimation. Thanks
to the recent studies on accelerating the dynamic voltage
drop analysis process [14]–[18], promising improvements in
both speed and accuracy have been achieved using machine
learning methods from XGBoost to neural networks. These
breakthroughs provide the prerequisites for the use of dynamic
PSN information in STA.

Circuit timing analysis incorporating PSN is a crucial and
complex undertaking. This task involves tackling a multitude
of challenges that must be overcome for an accurate and
reliable dynamic PSN-aware STA engine to be developed.
Specifically, we identify three key challenges in the con-
struction of such an engine. (1) Parameterized Modeling of
Noise Waveform. A novel parameterized modeling approach
is required with an appropriate trade-off between the number
of parameters and the PSN information retained. (2) Noise-
Aware Timing Modeling. A new learning-based noise-aware
timing model is required to map the power noise to the timing
impacts with enough accuracy. (3) Computational Efficiency.
There can be millions of cell delays to be calculated in a single
STA run, which demands a computationally efficient model to
finish STA in a reasonable time budget.

In this paper, we propose a dynamic PSN-aware timing
analysis method built inside an efficient STA engine. We
highlight our contributions as follows:

• Weibull Cumulative Distribution Function (CDF)
based PSN waveform modeling: We propose to model
every canyon-shaped PSN curve using the CDF of
Weibull distribution and reduce the modeling task to three
noise shape parameters.

• ML based accurate delay prediction: We capture the
non-linearity of delay and transition prediction tasks us-
ing data-driven ML models with outperforming accuracy.

Fig. 1. Variation of circuit delay and critical path with and without power
analysis integration.

• Fast just-in-time (JIT) integration into STA engine:
We use JIT compilation techniques to embed our ML
models into an STA engine, which provides both runtime
efficiency and flexibility.

The rest of this paper is organized as follows. Section
II demonstrates the background of STA and the motivation
to integrate STA with power analysis. Section III introduces
our PSN waveform modeling technique using Weibull CDF.
Section IV presents our noise-aware timing model, the char-
acterization process, and the fast JIT-based STA integration.
Section V presents the experimental results. Finally, Section
VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Limitation of Traditional Static Timing Analysis

In principle, the circuit design is broken down into timing
paths during STA. The total delay of a timing path is the sum
of all timing arc delays in the path. The timing arc delay is the
amount of delay from the input pin to the output pin of a logic
gate in a path. Typically, designers establish appropriate delay
models for timing arcs during gate characterization to facilitate
the calculation of timing arc delays under different scenarios.
The most common delay model is the LUT algorithm. The
timing arc delay is described as a function of the delay
table entries, such as input transition time and output load
capacitance. In the process of STA, the timing arc delay is
calculated based on the current input transition time and output
load capacitance through interpolation or extrapolation. After
the timing path delays are determined, the timing violations
will be checked based on timing constraints. For example,
there are two timing paths in Fig. 1, namely Path 1 and
Path 2. The total combination delay of the former path is 1.3
ns, while that of the latter path is 1.2 ns. The timing path
Path 1 is critical and the minimum clock period is 1.7 ns
assuming that the clock-to-q delay, the setup time, and the hold
time of a flip-flop are 0.3 ns, 0.1 ns, and 0.1 ns, respectively.

In traditional STA, designers analyze the timing perfor-
mance of a circuit without taking into account the impact
of power distribution and power-related noise on timing.
However, in modern electronic systems, power distribution and
noise can significantly impact timing performance, particularly
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for high-speed and low-power circuits. The impact of PSN on
timing is very complex and has different effects on different
devices. Neglecting PSN may result in misjudging critical
paths and overlooking potential timing violations in the circuit.
For example, in the circuit shown in Fig. 1, the NOR gate
is more sensitive to PSN compared to other types of logic
devices. As shown in Fig. 1(b), when incorporating the results
of power analysis into timing analysis, the delay of each timing
arc will be affected. This results in a change in the critical
path of the circuit, which becomes Path 2, and the maximum
combination delay increases to 2.05 ns. The motivation of this
paper is to find an efficient method to integrate power supply
noise analysis into STA. The key is to develop an effective
method for modeling dynamic PSN and establish an efficient
PSN-aware delay model.

The most comprehensive and accurate way to determine
the impact of PSN in timing analysis is to perform a dy-
namic circuit simulation. However, the simulation of such a
complicated network is infeasible, due to the long simulation
time. Different approaches have been proposed to address this
issue. Some works focused on the worst-case voltage drop on
the supply network to ensure eliminating all potential timing
violations [4], [5], [7], [19]. Some works modeled dynamic
PSN with its equivalent DC and then develop a PSN-aware
delay model based on this [8], [9]. However, these methods
tend to amplify the impact of power supply noise to some
extent, leading to overly pessimistic timing estimates.

Furthermore, to ensure the computational efficiency of the
STA engine, it is necessary to utilize parameterized modeling
of dynamic PSN. However, the LUT algorithm presents a
significant challenge to this task. Although the LUT algorithm
is capable of handling an arbitrary number of input variables,
its efficiency diminishes as the number of input variables
increases. The precision of the LUT is determined by its reso-
lution, i.e., the number of data points allocated for each input
variable. To accurately model highly nonlinear and complex
distributions, such as the impact of PSN on timing, a con-
siderable number of values need to be characterized for each
input variable. Assuming each input variable has m tabulated
values, the size of the LUT becomes mn, where n represents
the number of input variables. This exponential growth in
LUT size with increasing input variables results in significant
overhead on runtime memory and storage space. Furthermore,
the time complexity of the LUT algorithm is O(2n), leading to
a notable decrease in computational efficiency as the number
of variables increases. To establish a PSN-aware delay model,
it is necessary to introduce several variables that describe the
characteristics of dynamic PSN. Considering the input transi-
tion time and output load capacitance that must be considered
in STA, it is difficult to use the LUT algorithm to establish an
efficient delay model. In similar problems like signal-integrity-
aware error compensation [20], cell-delay modeling [21], and
arrival time modeling [22], machine learning based models
have been used as alternatives to LUT.

B. The Necessity of Modeling Dynamic Noise
In advanced nodes, the PSN usually has a high-frequency

noise component, which results in fast and large voltage

fluctuations. Such a high-frequency noise cannot be effectively
eliminated by decoupling capacitances as it can span as
short as 1/10 of a clock cycle. Traditional DC-based static
voltage drop estimation no longer reflects the actual noise
and can yield contradictory and unreasonable estimations. For
example, a change in clock frequency can dramatically impact
the voltage drop estimation, as shown in Fig. 2. A comparison
between the static IR simulation results in Fig. 2(a) and
Fig. 2(b) reveals that the static IR analysis becomes less
reflective of actual circuit noise with the increasing frequency
of PSN. As shown in the results in Fig. 2(a), although the
noise value obtained from static IR analysis is very small,
power supply noise can still have a significant impact on the
devices that flip early in the clock cycle. Therefore, we need
a new methodology that can consider dynamic PSN during
circuit timing analysis.

Fig. 2. Static voltage drop methods give two different voltage estimations for
the same PSN curve with different clock periods.

For PSN waveform modeling, the equivalent DC
method [8], [9] is a representative approach that is improved
upon the static voltage drop analysis method. Instead of
averaging the voltage inside the full clock cycle, they
simplify the dynamic noise within a time frame around the
switching event of the gate under analysis, as illustrated
in Fig. 3. This shorter time frame leads to more accurate
voltage estimation for every single signal transition, resulting
in significant improvements in accuracy.

Fig. 3. The equivalent DC method focuses on the voltage within the transition
period of the current gate.

However, this approach represents dynamic PSN with only
integrations (i.e., equivalent DC voltage) which neglect poten-
tially important features. As the nonlinear effects of circuit
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devices increase, the errors caused by such representation
become more apparent. For an And-or-invert gate in a 40 nm
process, we conducted the following experiment: while ensur-
ing that the PSN integral value during the signal flip remains
constant, we varied the duration of the PSN and calculated
the changes in the gate’s delay and output transition time by
SPICE. As shown in Fig. 4, delay and output transition time
can fluctuate greatly even if the integrals are fixed. Therefore,
it is essential to find an efficient method for modeling the
waveform of dynamic PSN.

Fig. 4. Delay and output transition time can fluctuate given the same PSN
integration value but different noise durations.

III. DYNAMIC NOISE MODELING

Caused by the toggling activities of neighboring logic gates,
the power supply encounters noise in canyon-like waveforms,
as depicted in Fig. 3. An accurate and concise representation
of such signals is essential for building a timing model. A
finite time-domain waveform like PSN cannot be effectively
modeled by frequency-domain-based methods such as FFT.
The reason is that these methods transform the original signal
to an infinite one by convolving it with a Sinc function, and
the correct shape feature of PSN in such an infinite signal has
to be covered by a too wide frequency range over hundreds of
GHz or even THz. Besides the difficulty to represent shapes,
the noise effect on timing is also very sensitive to the phase of
PSN signal (i.e., relative noise arrival times). All these features
of PSN signals make the model setup both time-consuming
and labor-intensive.

Edge-based modeling methods have been extensively stud-
ied in signal transition modeling [8], [9], [23]–[26]. However,
the first-order models like equivalent DC voltage [8], [9] may
become increasingly error-prone due to the complexity and
non-linearity of PSN waveforms at advanced technologies.
To achieve the desired accuracy, the modeling can become
overly complex and high-dimensional [23]–[26]. On the other
hand, unlike signal transition, PSN transition is generally
much longer due to the decoupling from both decoupling
capacitance and parasitics. As a result, the noise waveforms
exhibit approximate monotonicity during the period of signal
transition. While we can still adopt Weibull CDF like in [26]
to model such monotonic edges, we also need to account for

the interaction between the noise transition and its impacted
signal transition.

Equation (1) gives the original CDF of the Weibull distribu-
tion. T0 represents the starting point of the edge, which is the
last moment when the waveform amplitude is zero. Roughly
speaking, parameters α and β control the shape and scale of
the curve, respectively. In PSN waveform modeling, we prefer
intuitive and physically meaningful parameter definitions other
than α and β. Thus, we replace β with the noise transition
time τ and name α as noise shape factor. Here we define the
transition time of a signal as the time gap between 10% and
90% of ideal VDD. The relation between noise transition time
τ and the original β can be derived analytically as shown in
Equation (2).

W (t, α, β) = 1− e−((t−T0)/β)
α

, ∀t ≥ T0 (1)

t10% = T0 + β · (ln10
9
)1/α (2a)

t90% = T0 + β · (ln10)1/α (2b)

τ = t90% − t10% = β ·
(
(ln10)1/α − (ln

10

9
)1/α

)
(2c)

β =
τ(

(ln10)1/α − (ln 10
9 )1/α

) (2d)

The problem of fitting a signal using Weibull CDF can be
formulated as linear regression. In this work, we assume that
the falling edge and rising edge of PSN are symmetric. In fact,
due to various factors, the rise and fall edges of PSN wave-
forms are not perfectly symmetrical. However, in the design of
digital circuits, the logic gates are implemented with dual pairs
of pull-up and pull-down networks to prevent simultaneous on
or off and designers strive to achieve equal delays in the pull-
up and pull-down networks. Due to the design’s symmetrical
efforts and the effect of decoupling capacitors, the rise and fall
times of the PSN rarely exhibit highly asymmetric behavior.
As a result, there are many previous methods based on similar
symmetrical assumptions [8], [9]. If high modeling accuracy
is required, two additional parameters can be incorporated
to model the rise and fall times separately to ensure higher
accuracy. However, the characterization overhead will also
increase, which can be partially mitigated by using adaptive
sampling techniques. Therefore, we focus on the rising edge
of the signal in the following discussions. First, the rising edge
is normalized to the range of (0, 1). From Equation (1), the
following relation can be derived.

ln(−ln(1−W (t−T0)))
α = ln(t− T0) + ln(τ)− ln

(
(ln10)1/α − (ln 10

9 )1/α
)

(3)

This can be expressed as the linear equation:

y = a · x+ b (4)

where y = ln(t − T0), x = ln (−ln (1−W (t− T0))),
a = 1/α, and b = ln(τ) − ln

(
(ln10)1/α − (ln 10

9 )1/α
)
.

Given that T0 is the starting point of the edge to be fitted,
its value inherently depends on the characteristics of the edge.
Consequently, we can adopt linear regression algorithms to
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Fig. 5. The shape of Weibull CDF when the shape factor varies from 0.1 to
3.

find out a and b. Finally, we get the noise shape factor from
the reciprocal of a and the noise transition time τ from b by
Equation (2c).

At this point, we can model all possible standard edges
of dynamic PSN with noise transition time and noise shape
factor. Noise transition time indicates the overall slope of the
noise, while shape factors denote the convexity and concavity
of the waveform. Fig. 5 depicts some curves of Weibull
CDF. For clarity and convenience of description, we have
aligned these curves at the 10% and 90% points by applying
appropriate shifting to each curve. This alignment is employed
to better elucidate the influence of the noise shape factor on the
convexity and concavity of the edges. It is important to note
that no alignment procedure is involved in the actual fitting
process. The transition time of the curves is equal but the shape
factors vary from 0.1 to 3. As the shape factor increases, the
waveform transforms from a convex function into a concave
function. The Weibull CDF with different shape factors may
be used to represent the waveforms for different circuits. For
example, when the shape factor is 0.1, it is similar to the
response of a complex RC circuit; when the shape factor is 1,
it is changed to the step response of a first-order RC circuit;
for the shape factor of 3, the waveform is close to the standard
ramp output, which simply matches the waveform of pure
resistance loading.

Assuming that the noise rises and falls symmetrically, the
offset between noise modeling and gate toggling time and the
amplitude of the edge should be considered to model arbitrary
waveform shapes. We define the time interval between the start
point of modeling noise and the start point of gate toggling as
time shift factor ω.

According to the characteristics of the MOS transistor, when
the amplitude of PSN is within a certain range the impact of
noise amplitude on timing is roughly linear. As the amplitude
increases, the nonlinearity between the amplitude of PSN and
gate timing also increases. As shown in Fig. 6, the threshold
is approximately 20% of VDD in our experimental process.
When the peak value of PSN is less than 20% of VDD, the
impact of PSN on gate timing is roughly linear. As shown in
Fig. 6(a) and Fig. 6(b), within this range, it is sufficient to train
the multi-layer perceptron (MLP) models at a normalized am-

plitude. The R-squared scores between the data obtained from
linear interpolation and the original data are 0.976 for delay
and 0.987 for transition time. The results indicate that using
linear interpolation within this range introduces only small
errors in gate timing calculations. However, when performing
linear fitting to the entire dataset, the R-squared score for
delay decreases to 0.808, and for transition time, it decreases
to 0.587. This implies that using direct linear interpolation
would introduce larger errors. Therefore, when the PSN peak
value exceeds the threshold, it becomes necessary to train
MLP models with multiple amplitudes. Interpolating between
the models will significantly improve the accuracy of the
prediction results. For instance, as shown in Fig. 6(c) and
Fig. 6(d), the peak amplitude of PSN is 40% of VDD and three
MLP models are trained at different amplitudes: 20%, 30%,
and 40% of VDD. When performing interpolation between the
models, it can achieve increased prediction accuracy compared
to a single model. The R-squared score for delay increases
from 0.808 to 0.965, and the R-squared score for transition
time increases from 0.587 to 0.921.

Fig. 6. Variations of delay and transition time of a standcell with changes in
noise amplitude.

Fortunately, a practical power delivery system design typ-
ically intends to limit the range of IR Drop to achieve the
desired power saving and reliability [27]. Hence, training
MLP models at a single amplitude is often sufficient for most
practical applications.

Therefore, as depicted in Fig. 7, the dynamic PSN is finally
modeled by noise transition time τ , noise shape factor α, and
time shift factor ω.

IV. LIBRARY CHARACTERIZATION

Just knowing the logical function of a cell is not sufficient
to build a functionally correct circuit. More aspects such as
the transmission speed and power consumption need to be
considered for functional correction. Additionally, the speed
and power of a cell are influenced by many factors like
operation voltages and output load. The process to collect this
sort of information for each standard cell is called library
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Fig. 7. The definitions of noise transition time τ , noise shape factor α, and
time shift factor ω, and their roles in modeling the normalized PSN.

characterization. Library characterization, therefore, plays a
key role in STA by providing the basic delay and transition
timing information for every timing arc.

A. Problem Formulation

Liberty files, also known as liberty standard cell libraries
or liberty timing libraries, are essential components in the
electronic design automation process for integrated circuits.
The results of library characterization are compiled into liberty
files in the form of LUTs and these files contain detailed
timing and power characteristics for each standard cell in
a specific semiconductor process technology [28]. Typically,
the LUT in liberty files describes the implicit mapping of
input transition time Ttrans and total output load capacitance
Cload to timing information, which can be demonstrated as
T = f (Ttrans, Cload).

The delay of the critical path determines the reported slacks
of STA. The path delay can be expressed as Equation (5),
where D denotes the path delay, m represents the number of
timing arcs included in the path, Ttrans,i−1 is the transition
time of (i−1)th gate in the path and Cload,i is the total output
load capacitance of the ith gate.

D =

m∑
i=1

f (Ttrans,i−1, Cload,i) (5)

D′ = D +∆D = D +

m∑
i=1

g(vi) (6)

The static IR drop based methods actually attempt to model
the path delay fluctuation caused by supply voltage drop,
which is expressed in Equation (6). D′ is the estimation of
path delay considering the impact of voltage drop. D is the
original path delay and g(v) is the function describing the
impact of noise on gate performance. vi is the actual voltage
of ith gate.

For static IR drop analysis, vi is the average voltage within
a clock cycle, as shown in Equation (7). Here, clockcycle =

Ti − Ti−1. The error is mainly introduced by the assumption
that the operating voltage of the gates is the average value.

vi =
1

Ti − Ti−1

∫ Ti

Ti−1

vdt (7)

In order to solve the problem, the equivalent DC voltage
based methods are devoted to finding a precise interval to
calculate the accurate operating voltage of each gate. In fact,
these methods aim to model Equation (8) or its variations. The
dynamic PSN is represented by its integral.

T = f

(
Ttrans, Cload,

1

Ti − Ti−1

∫ Ti

Ti−1

vdt

)
(8)

However, the transition time and time shift factor have a non-
negligible impact on timing. As demonstrated in Section III, all
normalized dynamic PSN can be modeled by three parameters:
noise transition time τ , noise shape factor α, and time shift
factor ω. The problem is to find out the following function.

T = f (Ttrans, Cload, τ, α, ω) (9)

B. Multi-Layer Perceptron (MLP) Model

LUT is highly efficient for regression tasks with few input
parameters. However, the space complexity of LUT is O (mn).
For this task, storing the regression results will take up
enormous space and make it time-consuming to compute the
interpolated result.

The effectiveness of MLP in regression tasks speaks for
itself. This method can extract the features automatically and
eliminate to assign fitness order for each input parameter.
Besides, the trained network can provide quick prediction
results despite the large scale of input parameters. The train
and inference of MLP can be easily deployed on GPU for
parallelized acceleration.

1) Training Data Generation: We have parameterized the
gate timing under the influence of PSN, representing it as a
distribution with five variables: Ttrans, Cload, τ , α, and ω. By
sweeping these five variables in SPICE, we can characterize
the gate timing performance under the influence of PSN. The
first two parameters are the inherent input of conventional
STA. Their values are explictly determined in the index
of LUT in liberty files. On the other hand, the ranges of
noise transition time, noise shape factor, and time shift factor
encompass all potential PSN occurrences on the PDN. The
noise shape factor indicate the convexity and concavity of
the waveform. As shown in Fig. 5, the typical shapes of the
PSN can be covered with the shape factor varying in the
[0.1, 3]. The noise transition time approximately reflects the
frequency spectrum of PSN. Noise with very short transition
times will be filtered out by decoupling capacitors, while noise
with excessively long transition times will exhibit more static
characteristics. Therefore, we need to choose a reasonable
range for the noise transition time, which, in our experimental
process, is set as [0.1 ns, 10 ns]. We set 10 sample points at
equal intervals according to the logarithmic coordinates in the
above two ranges, respectively.
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The last parameter is used to eliminate the error introduced
by the misalignment between the noise start time and the
toggling activity. The time shift factor is defined as ω =
Ttoggle start−T0, where T0 represents the starting point of the
PSN waveforms, which is the last moment when the amplitude
of PSN is zero. In the temporal dimension, the proximity of the
PSN to the signal transition significantly affects gate timing.
Due to the nonlinear nature of dynamic PSN, when the PSN is
sufficiently close to the signal transition, the influence of time
shift factor on timing also exhibits strong nonlinearity. How-
ever, as the time shift factor increases, this influence gradually
diminishes. Fig. 8 illustrates the representative distribution of
delay versus time shift factors in our experimental process.
The transition time of the PSN is 0.6 ns and the shape factor
is 1. It is observed that the impact of the time shift factor on
timing is strongly non-linear within the range of -0.1 ns to 1
ns. When the time shift factor exceeds 1ns, its influence on
the delay significantly diminishes. Additionally, when the time
shift factor surpasses 2ns, it can be deemed to have no impact
on the delay. We set 9 sample points at equal intervals from
-0.1 ns to 1 ns and measure the timing when the time shift
factor is 2 ns.

Fig. 8. Distribution of delays relative to time shift factors of a standard cell.

The timing information consists of delay and output transi-
tion time. Delay is the time interval between the 50% point of
input transition to the 50% point of output transition. Output
transition time is the time interval between 10% point and
90% point of output transition. The setting of characterization
is demonstrated in Table I.

TABLE I
THE PARAMETER SETTINGS OF TRAINING DATA GENERATION

Parameter Size Range

Input

Ttrans 10 Liberty
DeterminedCload 10

τ 10 [0.1 ns, 10 ns]
α 10 [0.1, 3]

ω 10 [−0.1ns, 2ns]

Output Delay 1 -
Output Ttrans 1 -

Once the range of three parameters are determined, the
Weibull-CDF-fitted PSN waveforms with different parameters

Fig. 9. The architecture of the proposed MLP model.

can be calculated and stored into piece-wise linear (PWL)
files. SPICE tools can read these PWL files to obtain power
supply voltage waveforms with specific noise. Subsequently,
based on the input transition time and output load capacitance
obtained from liberty files, the delay and output transition
time for each timing arc can be measured. By measuring and
recording the timing performance of all timing arcs under all
possible conditions, we can obtain a dataset that will be used
for training the neural network.

2) Network Architecture: Following a comprehensive com-
parison of various MLP models with different widths and
depths, we have selected the architecture illustrated in Fig.
9. The detailed experimental results are present in Section
V. As shown in Fig. 9, the MLP consists of an input layer,
two hidden layers and a output layer. The input feature size
is 5 and the output size is 1. Each hidden layer consists of
128 neurons. In order to ensure convergence, all layers in
the MLP model, except for the output layer, are normalized
by a 1D batch normalization layer [29]. Although Sigmoid
may cause the vanishing gradient problem in deep networks,
it can offer better non-linearity and normalize the output of
the hidden layers. Therefore, given the shallow architecture in
this work, we employ Sigmoid as the activation function to
introduce non-linearity. Four different networks are required
for one timing arc to cover the requirement of rise transition
time, rise delay, fall transition time, and fall delay.

3) Loss Function: The loss function is expressed as Equa-
tion (10). Here, L is the loss of a mini-batch. B is the size
of a mini-batch. P denotes the prediction vector and Pi is the
ith value of the vector. Gi is the ith value of ground truth. θ1
and θ2 are hyper-parameters to control the penalty items.

L =

B∑
i=1

∣∣∣∣ Pi −Gi

Gi + eps

∣∣∣∣+θ1

B∑
i=1

|Pi −Gi|−θ2 ·B ·min (P ) (10)

The main goal of training is to minimize relative error.
Having regard to a small deviation in the estimation of the
small value will lead to a large relative error, we add the mean
absolute error as a constraint. Moreover, both delay and output
transition time are always positive, so the negative of minimal
of each batch is used to penalize the negative prediction. In
this case, the size of mini-batch is 1000. θ1 is fixed to 0.2
ns−1 and θ2 is set to 0.001 ns−1 initially and is decreased by
the factor of 0.5 every 5 epochs. Both hyper-parameters are
determined by experimental results of the MLP model trained
without constraints.
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input

FC1

FC2

FC3

FC4

output

graph(%self.1: __torch__.MLP, %x: Float(1, 5, 

strides=[5, 1]..)):

%FC4: __torch_mangle_9.Sequential = 

prim::GetAttr[name=FC4](%self.1)

…

%75: int = aten::Int(%batch_size)

%76: int = prim::Constant[value=-1]()

%77: int[] = prim::ListConstruct(%75, -1)

%input.1: Float(1, 5) = aten::View(%x, %77)

%163: Tensor = prim::CallMethod[name=forward]

(%FC1, %input.1)

%164: Tensor = …(%FC2, %163)

%165: Tensor = …(%FC3, %164)

%166: Tensor = …(%FC4, %165)

return (%166)

Fig. 10. Example ML model and JIT IR representation (in TorchScript).

C. JIT Compilation of ML Models

After training the ML models, we integrate them into our
STA engine. The STA engine uses our models to compute
PSN-aware cell delays and perform transition propagation.
This imposes two challenges:

1) The computation speed of ML models should not
severely degrade the STA runtime. We need to embed
an ML inference engine inside our STA engine with
comparable efficiency.

2) There are different models for different types of cells,
with different trained weights and even different layer
types. The models and weights are part of the standard
cell library and not part of the engine. The STA engine
should be model-agnostic, in the sense that changes
made to ML models only affect the input of the STA
engine, not its own code.

We solve the above challenges by introducing just-in-time
(JIT) compilation to our ML models. Specifically, the layers of
ML models are compiled into an intermediate representation
(IR) of the underlying computation graph. Fig. 10 shows an
example ML model and its corresponding IR. Most state-
of-the-art ML frameworks like PyTorch (TorchScript) and
TensorFlow (TF-ONNX) support the creation of such an IR
representation. The IR goes through its own optimization
passes to maximize its runtime performance.

After optimization, this IR and all the corresponding weight
parameters are serialized into a bit stream, which we store in
the Liberty cell library file. On invocation, the STA engine
deserializes and interprets the ML models from the input
Liberty file. A lightweight ML framework runtime dedicated
to IR execution is included in our STA engine, which provides
optimized and vectorized implementation of ML operators.
The JIT technique provides fast and flexible ML integration
which is necessary for the ML application in timing analysis.

V. EXPERIMENTAL RESULTS

We implement the proposed method and make a compre-
hensive evaluation under an industrial 40nm technology. To
meet the requirement of logical synthesis, we model several
basic standard cells including inverter, NAND gate, NOR gate,
and-or-invert (AOI) gate, or-and-invert (OAI) gate, and D-type
flip-flop (FF). Table IV lists all characterized standard cells in
detail. We generate our dataset of input parameters as proposed

in Section IV-B, and then randomly partition the dataset into
a training set and a test set with a ratio of 70% and 30%,
respectively. The PSN amplitude during characterization is
20% of VDD. We conducted the training and evaluation of
our methods on a platform equipped with an Intel i9 9980XE
CPU and an NVIDIA GeForce 2080 Ti GPU with 11 GB of
device memory. During training, we use PyTorch backend with
Adam [30] optimization engine. After training, we JIT compile
all the resulting models to TorchScript and extend the cell
libraries with the bit stream of these models. We implement
our dynamic PSN-aware timing analysis framework on top of
the open-source STA engine OpenTimer [31].

A. Fitness Accuracy

To demonstrate the effectiveness of the proposed Weibull
CDF-based modeling method, we conducted experiments to
measure the timing errors induced by the fitting. The delay and
output transition time of each timing arc under the influence
of four different realistic PSNs are calculated by SPICE. The
waveforms of the realistic PSNs were represented in PWL
format. Subsequently, we fitted the four waveforms using
Weibull CDF and recalculated the delay and output transition
time under the influence of fitted PSN. As shown in Table II,
the experimental results indicate that our proposed modeling
method can reasonably fit the PSN waveforms. The mean
squared error (MSE) between fitted function and original
function is below 0.05. In addition, the timing errors caused
by fitting are also very small, with an absolute average relative
deviation (AARD) of less than 4% for delay and less than 3%
for transition time. The AARD between the prediction and
ground truth can be computed using Equation (11), where k
denotes the length of the testset, Pi denotes the ith value of the
prediction, and Gi denotes the ith value of the ground truth.

AARD =
1

k

k∑
i=1

∣∣∣∣Pi −Gi

Gi

∣∣∣∣ (11)

TABLE II
ACCURACY RESULTS OF WEIBULL CDF-BASED PSN MODELING

METHOD

MSE of Fitted function AARD of Delay AARD of Transition Time

1.03E-03 2.28% 1.72%
4.41E-02 3.80% 2.68%
9.05E-03 3.30% 2.52%
1.82E-02 3.05% 2.37%

B. The Architecture of MLP Models

To identify the most efficient MLP architecture, we trained
multiple MLP models with varying depths and widths, and
measured their accuracy and inference speed. Here, width
refers to the number of neurons in each hidden layer, and
depth represents the total number of layers in the model. For
example, a model with a width of 128 and a depth of 5
has three hidden layers, each consisting of 128 neurons. The
experimental results are shown in Table III.
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The results indicate that as the width and depth increase,
the number of model parameters also increases. The change
in accuracy is more complex. For the models with the same
depth, increasing the width will improve the model’s fitting
capacity, leading to a rapid increase in prediction accuracy.
However, as the width continues to increase, the rate of accu-
racy improvement slows down until it approaches a maximum
value. This is because MLP may not converge to the global
optimum accurately, and increasing the width may lead to
overfitting on the training set, limiting further improvement
in prediction accuracy. For models with the same width, in-
creasing the depth improves the model’s ability to fit nonlinear
patterns in the data. Consequently, for models with lower
depths, increasing the depth results in a rapid improvement
in prediction accuracy. However, as the depth becomes large,
the impact of vanishing gradients becomes more prominent,
making it easier for the MLP models to converge to inferior
local optima, leading to a decline in prediction accuracy.

The primary consideration in selecting the MLP architecture
is accuracy. To ensure high precision, we considered all struc-
tures with an AARD less than 5%, as indicated in the bolded
data in Table III. When comparable accuracy is achieved,
selecting a structure with fewer parameters leads to reduced
storage usage. Consequently, we opted for an architecture with
a depth of 4 and a width of 128 to train our MLP models.
This particular configuration achieved a competitive AARD
of 0.0489 with only 33921 parameters. In the characterization
phase, we conducted measurements of 105 delays and output
transition times for each timing arc, both for rising and falling
scenarios. The trained MLP models effectively captured the
gate timing distribution with remarkable accuracy, utilizing
only 33921 parameters. In contrast to the LUT algorithm,
which is limited to linear interpolation between data points,
the MLP models demonstrated the ability to learn non-linear
relationships within the data. As a result, the LUT algorithm
demands a substantially larger dataset and consumes signif-
icantly more storage space to achieve comparable prediction
accuracy.

C. Single-Gate Accuracy

We first demonstrate the performance of our model for
predicting the delay and transition of a single gate. As shown
in Fig. 11, the curve of the loss function converges fast enough
to complete a single-gate training within 50 epochs.

To evaluate the accuracy of trained MLP models, we mea-
sure the AARD on the test set for each model. The average
AARD among all models is 4.89%.

As shown in Fig. 12(a) and Fig. 12(a), the maximum
AARD for all MLP models is less than 12%, and more
than 75% of trained models have less than 6% AARD. This
result demonstrates the capability of our MLP-based model to
capture the complex and non-linear effects of dynamic power
noise on timing.

Moreover, we examined the distribution of the predicted
errors for each MLP model. A typical error distribution is
illustrated in Fig. 12(c). The x-axis denotes the absolute value
of prediction errors, while the y-axis represents the relative

prediction errors. The distribution of predicted errors from the
trained MLP models is primarily concentrated near the origin
of the coordinate axis, indicating that both the relative and
absolute errors are small. Furthermore, we noted that points
with relatively large relative errors have very small absolute
errors (less than 0.03 ns), while points with large absolute
errors have very small relative errors (less than 10%). The
former is because very small prediction errors can result in
large relative errors for cases with low output delays, but such
prediction errors have minimal impact on the final path delay
error. The latter occurs with a very low frequency, and the
relative errors are all less than 10%, suggesting that the model
is capable of providing accurate predictions.
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Epoch
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Fig. 11. Convergence maps of the loss function for all MLP models. Each
curve represents the convergence of an MLP model during training.

(a) Histograms of the AARD for all
delay models

(b) Histograms of the AARD for all
transition time models
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(c) Scatter map of the predicted error distribution from an MLP model

Fig. 12. Accuracy result of trained MLP models.
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TABLE III
EXPERIMENTAL RESULTS OF THE NUMBER OF PARAMETERS AND ACCURACY FOR MLP ARCHITECTURES WITH DIFFERENT WIDTHS AND DEPTHS

#Layers 3 4 5 6

Width 32 64 128 256 32 64 128 256 32 64 128 256 32 64 128 256
#Parameters 1281 4609 17409 67585 2337 6769 33921 133377 3393 12929 50433 199169 4449 17089 66945 264961

AARD 0.143 0.116 0.0971 0.0851 0.0942 0.0597 0.0489 0.0488 0.0822 0.0546 0.0494 0.0495 0.134 0.0952 0.0956 0.0952

TABLE IV
THE DETAILED INFORMATION OF CHARACTERIZED STANDARD CELLS

Type Input Scale

Inverter INV1 ×1,×2,×4,×8,×16
Nand ND2,ND3,ND4 ×1,×2,×4,×8
Nor NR2,NR3,NR4 ×1,×2,×4,×8

And-Or-Invert AOI12,AOI22 ×1,×2,×4
Or-And-Invert OAI12,OAI22 ×1,×2,×4

D-type Flip-Flop DFF1 ×1,×2

D. Paths Accuracy

Predicting the delay of a signal path with multiple gates
is much more difficult, because the ML models may be
influenced by the overestimation or underestimation from the
previous stages. Furthermore, the discrepancy in the relative
noise arrival time of different gates should be taken into
consideration as well. To verify the effectiveness of our
proposed method on signal paths, we compare our path delay
prediction result with Synopsys HSPICE, OpenTimer [31],
and the equivalent DC method [9] under 3 representative PSN
waveforms listed in Table V.

We run vectorless dynamic simulation using commercial
tools to obtain the dynamic supply noise, which is then
parameterized using Weibull CDF modeling and fed to the
proposed flow. Each waveform in Table V represents a typical
scenario of vectorless dynamic voltage drop analysis. Group
A represents a typical waveform generated by with lower
toggling rate, exhibiting relatively small amplitude (10% of
VDD) and lower frequency (τ = 5 ns). In Group A, the shape
of PSN is the modeled using α = 0.3. On the other hand,
Group B represents the waveforms generated with typical
toggling rate, exhibiting relatively larger amplitude (20% of
VDD) and higher frequency (τ = 0.5 ns). Similarly, in Group
B, the shape of PSN is the modeled using α = 0.3. In Group
C, the PSN waveform represents even higher toggling rate,
exhibiting higher frequency (τ = 0.5 ns) and amplitude (20%
of VDD). In group C, the shape of PSN is modelled using
α = 3. The noise waveforms start simultaneously with the
first stage input of the circuit. We regard SPICE as the golden
result for its accurate and rigorous waveform simulation at the
cost of unacceptable runtime on large circuits. To ensure a fair
comparison of results, both SPICE simulations and predictions
using various models were conducted without considering
interconnect delays and signal slew fluctuation caused by
transmission. We invocate OpenTimer to compute the path
delay under the non-linear delay models (NLDM) library of
two corners, typical and worst. The typical corner ignores all
power noise, and the worst corner estimates the worst-case
static voltage drop.

1) Inverter Chains: We first conducted experiments on
inverter chains of different lengths. Fig. 13 depicts the result
of path delay measured by different methods. The results
show that our proposed method is the closest to the actual
timing performance of the inverter chain, with an average 2.3%
absolute deviation between our dynamic PSN aware timer and
SPICE. Due to neglecting the impact of PSN, the path delay
obtained from timing analysis using the typical corner LUT is
lower than the actual result. When calculating using the worst
corner LUT, the circuit always operates under the worst-case
noise conditions, which amplifies the effect of PSN and leads
to excessively pessimistic results. Modeling PSN using the
equivalent DC method can eliminate the pessimistic estimates
introduced in noise modeling and make the results closer to
reality. However, this method ignores other characteristics of
dynamic noise, so its prediction results are still not accurate
enough.

TABLE V
PSN WAVEFORM PARAMETER SETTINGS UNDER TEST

Group A B C
τ 5 ns 0.5 ns 0.5 ns
α 0.3 0.3 3

Amplitude 10% of VDD 20% of VDD 20% of VDD

2) Circuit Benchmarks: To further test the performance of
the proposed method in STA under real circuit scenarios, we
carried out experiments on ISPD 2012 benchmarks [32]. Fig.
14 shows the comparison of results, where we remain the
closest to the SPICE simulation. Compared with the static volt-
age drop-based methods, our proposed method successfully
eliminates the substantial pessimism in PSN-induced delay.

AER =
1

n

n∑
i=1

Pi −Gi

Gi
∗ 100% (12)

As shown in Table VI, our proposed method stands out
among all approaches with an average error ratio (AER) of
6.27%. The AER can be derived from Equation (12), where n
denotes the length of the testset, Pi denotes the ith value of
the prediction, and Gi denotes the ith value of the ground
truth. NLDM typical corners introduce excessive optimism
with potential timing violations (negative percentages), while
worst corners and ablations on the parameter ω introduce
excessive pessimism (large positive percentages). These results
clearly demonstrate the effectiveness of our proposed PSN-
aware timing analysis method, especially our parameter-based
PSN waveform modeling technique which is critical in the
analysis of long paths with time-shifted waveforms.

Fig. 15 shows a stage-by-stage analysis of delay prediction
for the critical path of the circuit DMA. Our model achieved
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(a) Group A (b) Group B (c) Group C

Fig. 13. Path delay of inverter chains in different lengths generated by the proposed method, SPICE, equivalent DC based method, and OpenTimer.

(a) Group A (b) Group B (c) Group C

Fig. 14. Maximum path delay of different circuits in ISPD2012 generated by the proposed method, SPICE, and OpenTimer.

TABLE VI
THE AVERAGE ERROR RATIO BETWEEN OUR METHOD AND BASELINES

IN PREDICTING THE MAXIMUM PATH DELAY ON ISPD 2012
BENCHMARKS.

AER
Typical

AER
Worst

AER
Ours (w/o ω)

AER
Ours

DMA -53.4% 82.0% 46.5% 4.28%
VGA_LCD -47.9% 104.9% 52.4% 5.56%
DES_PERF -51.4% 76.7% 30.9% 12.6%

PCI_BRIDGE32 -48.3% 120.3% 44.0% 8.43%
B19 -57.7% 52.2% 11.5% 2.15%

NETCARD -39.4% 100.7% 67.4% 4.58%

Average -49.7% 89.5% 42.1% 6.27%

a low prediction error of 1.255% for the delay of this path.
Our method not only gives accurate path delay estimation,
but also provides fine-grained delay information down to a
single gate. Besides, it can be observed that for gates with
very small delays, although the relative error of the prediction
may be large, this error does not have a significant impact on
the final path delay. Such information can be very useful in
timing-driven circuit optimization flow. When training under
the same conditions, prioritizing the accuracy of high-delay
scenarios can lead to more efficient training. This is the reason
why we added the constraint term θ1

∑B
i=1 |Pi −Gi| in the

loss function.

E. Ablation Study on Proposed Method

In order to examine the individual contributions of each
component, we conducted a series of ablation experiments to
measure the impact of each component on the accuracy. We
designed seven experiments, where the impact of power noise
modeling methods, delay model methods, and loss function
were taken into consideration. The specific settings of the

Fig. 15. Gate-level delay comparison between the proposed method and
SPICE.

experiments are illustrated in Table VI. The three types of
PSN waveforms presented in Table V were also tested in
the experiment and the noise started simultaneously with the
signal propagation. It should be noted that for the 2-entry LUT,
the entries are Ttrans and Cload; for the 3-entry LUT, the
inputs are Ttrans, Cload, and noise voltage; for the 4-input
MLP, the inputs are Ttrans, Cload, τ , and α; for the 5-input
MLP, the inputs are Ttrans, Cload, τ , α, and ω.

In these experiments, we used different methods to cal-
culate the critical path delay of the circuits in ISPD 2012
benchmarks. Table VI presents the AER between the predicted
timing values from the seven experiments and the SPICE simu-
lation results. Similar to the previous experiments, interconnect
delays and signal slew fluctuation caused by transmission lines
were not taken into account. The AER of output transition time
is the average relative error between the predicted values and
the ground truth measured in SPICE simulation at each stage.

From the settings in the table, it can be seen that EXP1
is equivalent to calculating path delay using typical corner
LUT, while EXP2 is equivalent to calculating path delay
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TABLE VII
THE SETTINGS OF ABLATION EXPERIMENTS AND CORRESPONDING RESULTS

EXP1 EXP2 EXP3 EXP4 EXP5 EXP6 EXP7

Noise Model None Worst-case DC Equivalent DC Weibull-CDF Weibull-CDF+ω Weibull-CDF+ω Weibull-CDF+ω
Delay Model 2-entry LUT 2-entry LUT 3-entry LUT 4-input MLP 5-input MLP 5-entry LUT 5-input MLP

Loss Function None None None Proposed Relative Error None Proposed

AER of Path Delay -49.7% 89.5% 71.3% 42.1% 9.51% 11.4% 6.27%
AER of Transition Time -74.5% 63.6% 50.8% 39.5% 13.7% 16.0% 8.67%

using worst corner LUT. Similar to previous experimental
results, EXP1 provided an overly optimistic prediction result
with AER of -49.7% for path delay prediction and -74.5%
AER for transition time prediction, while EXP2 provided an
overly pessimistic prediction result with AER of 89.5% for
path delay prediction and 63.6% for transition time prediction.
Comparing the results of EXP2 and EXP3 demonstrates that
modeling dynamic noise with equivalent DC can mitigate
pessimistic estimates to a certain degree. The average voltage
of the modeled dynamic noise in EXP3 and EXP4 is the
same. EXP3 only considers the static effect of the PSN, while
EXP4 fits the PSN waveform using Weibull CDF, which can
more accurately reflect the actual impact of the noise. The
comparison of EXP4 and EXP7 results reveals the impact
of the time shift factor on pessimistic removal. In EXP4,
where the time shift factor is absent, PSN is assumed to occur
simultaneously with the signal propagation of each timing arc,
leading to a higher level of pessimistic estimation. In contrast,
in EXP7, the delay model considers the timing offset between
each timing arc and PSN to adjust the impact of noise on the
delay. By incorporating the time shift factor, the pessimistic
estimation caused by ignoring the offset between PSN and
the current timing arc is significantly reduced, especially for
timing arcs that are far away from the noise source. Therefore,
compared to EXP4, EXP7 reduces the AER from 42.1% to
6.39% for path delay prediction and from 39.5% to 8.67% for
transition time prediction. The distinction between EXP5 and
EXP7 lies in the loss function utilized for training the MLP
models. With the incorporation of the two constraints proposed
in this paper, the MLP models trained in EXP7 are capable of
providing more precise predictions. The results of EXP6 and
EXP7 show that in multi-input scenarios, using MLP instead
of LUT can achieve higher modeling accuracy. The 5-entry
LUT is also obtained during the characterization phase. To
generate the data for training MLP models, we vary Ttrans,
Cload, τ , α, and ω in SPICE simulations to obtain different
timing values, which are then stored in the corresponding five-
dimensional matrices. When combining these matrices with
the range of the five input variables, the corresponding 5-
entry LUT can be generated. The LUT can only perform
linear interpolation between any two data points, while the
MLP learns to fit the nonlinear variations between data points
through training. Considering the complex and nonlinear im-
pact of noise on timing performance, MLP exhibits higher
accuracy in modeling the timing distribution, even given the
same amount of characterization data. Moreover, the 5-entry
LUT contains 100,000 entries, whereas the MLP consists of

33,921 parameters. Compared to the 5-entry LUT, the MLP
achieves higher space efficiency and occupies less storage
space.

F. JIT Integration Efficiency

The PSN-aware analysis should not incur too large an
overhead to timing analysis runtime. By replacing the table
look-up operation in NLDM models with MLP-based PSN-
aware models, a larger amount of computation is needed.
Fortunately, as shown in Table VIII, there is only 8%–25%
runtime degradation incurred by our flow. Meanwhile, the
percentage of runtime degradation is greatly lowered on larger
circuits. This indicates that the model computation is not our
runtime bottleneck, and the added runtime on small circuits
mostly comes from one-time initialization work. The superior
performance of ML models in STA flow comes from our JIT
compilation technique which provides both fast and flexible
ML integration.

TABLE VIII
SPEED COMPARISON BETWEEN NLDM (OPENTIMER) AND OUR

PROPOSED METHOD

#Cells NLDM
Runtime

Ours
Runtime

Runtime
Degradation

DMA 25301 14.77 s 19.73 s 25.1%
VGA_LCD 164891 78.96 s 95.72 s 17.5%
DES_PERF 111229 43.29 s 50.08 s 13.6%
PCI_BRIDGE32 33203 13.84 s 18.31 s 24.3%
B19 219268 152.53 s 171.58 s 11.1%
NETCARD 958780 517.80 s 562.02 s 7.9%

VI. CONCLUSION

In this paper, we have presented an accurate and fast
dynamic PSN modeling technique. We characterize a PSN
curve using Weibull CDF functions and represent the standard
cells by 2 inherent parameters and 3 PSN-aware parameters.
To more accurately and efficiently model the PSN effect on
timing, we adopt MLP-based delay models and integrate them
into STA engine by introducing JIT compilation. Experimental
results show that MLP gives accurate estimations of single-cell
timing with an average relative error of 4.89%. Additional
results indicate that the proposed method is still capable of
more complex path delay prediction tasks. The average error
between the proposed method and SPICE is as low as 2.3%
on inverter chains and 6.27% on the ISPD2012 benchmarks.
Our adoption of machine learning models in STA engine gives
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a substantial accuracy improvement and pessimism reduction,
incurring very small runtime overhead.

The proposed work demonstrates the necessity of modeling
the interaction between dynamic noise and timing, which also
sheds light on many future potential areas to explore. For
example, we still need to further reduce the size of the MLP
model and explore its application in dynamic timing analysis
(DTA). Furthermore, leveraging a more precise dynamic noise-
aware DTA, we can seamlessly incorporate this approach
with vector-based dynamic noise analysis. This fusion has
the potential to mitigate the prevailing pessimism in sign-off
analysis. Finally, we would like to further investigate more
complex interaction or high order effects induced by technol-
ogy advancement and power supply architecture innovation,
e.g., buried power rail. Thus, the proposed work will be open
sourced to facilitate the community for future studies.
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