
Handling Latch Loops in Timing Analysis with
Improved Complexity and Divergent Loop

Detection
Xizhe Shi1∗, Zizheng Guo1,2∗, Yibo Lin1,2,3† Runsheng Wang1,2,3, Ru Huang1,2,3

1School of Integrated Circuits, Peking University 2Institute of Electronic Design Automation, Peking University
3Beijing Advanced Innovation Center for Integrated Circuits

Email: xizheshi@stu.pku.edu.cn, {gzz, yibolin, r.wang, ruhuang}@pku.edu.cn

Abstract—Latch loops introduce feedback cycles in timing
graphs for static timing analysis (STA), disrupting timing propa-
gation in topological order. Existing timers handle latch loops
by checking the convergence of global iterations in timing
propagation without lookahead detection of divergent loops.
Such a strategy ends up with the worst-case runtime complexity
O(n2), where n is the number of pins in the timing graph. This
can be extremely time-consuming, when n goes to millions and
beyond. In this paper, we address this challenge by proposing
a new algorithm consisting of two steps. First, we identify the
strongly connected components (SCCs). Second, we implement
parallelized arrival time (AT) propagation between SCCs while
conducting sequential iterations inside each SCC. This strategy
significantly reduces the runtime complexity to O(

∑
i k

2
i ) from

the previous global propagation, where ki is the number of pins
in each SCC. Our timer also detects timing information divergent
loops in advance, avoiding over-iteration. Experimental results on
industrial designs demonstrate 12.31× and 7.3× speed-up over
PrimeTime and OpenSTA on average, respectively.

I. INTRODUCTION

STA plays an essential role in the electronic design automa-
tion (EDA) flow for assessing circuit timing under varying
scenarios [1]. Therefore, as integral components of EDA tools,
STA engines are vital for identifying timing violations at
different design stages, aiding in circuit verification [2]. As
sequential elements exhibiting distinct timing behaviors com-
pared to flip-flops (FFs), latches are widely used in modern
VLSI circuits for their numerous benefits, including reduced
area, lower power, and time borrowing capability [3], [4].

The procedure of STA first converts the circuits to directed
acyclic graphs (DAGs), and analyze them in a level-by-level
manner following the topological order. However, the incor-
poration of latches into a circuit may result in the emergence
of feedback loops. Unlike combinational logic loops that are
likely to lead to divergent AT results, latch feedback loops
may create convergent AT propagation, but destroy the directed
acyclic nature of the original graph. This may cause failure of
timing analysis or incorrect timing results [5].

In order to address feedback loops resulting from latches,
subsequently referred to as latch loops, a series of methods

* Equal contribution, † Corresponding author.
This project is supported in part by the Natural Science Foundation of

Beijing, China (Grant No. Z230002), the National Science Foundation of
China (Grant No. T2293701), and the 111 Project (B18001).

have been employed in industry. In early industrial EDA
tools, STA engines employed cycle cutting technology in the
detected latch loops, selecting some timing arcs in loops as
loop-breaker arcs to remove [6]. Although this makes the
resulting graph acyclic, it prevents timing propagation in the
selected broken timing arcs, which may turn out to be critical.
As a result, such a method is fast but may be inaccurate.

To derive accurate timing reports considering latch loops,
various academic research works have proposed different
algorithms. The approach proposed in [7] computes circuit
yields at the cost of additional extraction of constraint graphs
by verifying the absence of positive or negative loops in the
corresponding constraint graphs. In [8], graph decomposition
methods are initially employed, with subsequent improvements
made to the form of graph traversal. However, this heuristic
algorithm inherently results in some loss of accuracy. The
research in [9] improves accuracy by iteratively propagat-
ing timing information to analyze latch loop convergence.
However, this method increases analytical complexity and
requires additional buildup of the reduced timing graph (RTG).
The research work in [10], optimizes RTG-based convergence
detection, reducing iterations and runtime of STA.

Most of the mentioned methods improve accuracy but
incur much higher time complexity, often quadratic, due to
additional construction of RTGs or other auxiliary graphs.
Therefore, these methods lack practicality and are not widely
adopted in industry. As of today, leading-edge STA engines
including PrimeTime [11] and OpenSTA [12] still use a
vanilla iteration-till-converge approach to handle latch loops.
Although this approach works well in practice, its worst
theoretical complexity can also be up to O(n2).

In this work, we propose a novel algorithmic framework
to accelerate the STA process for circuits with latch loops.
Our timer, based on this framework, can ground-breakingly
pre-detect divergent loops and outperforms widely used tools
like PrimeTime and OpenSTA in runtime. We summarize our
contributions as follows:

1) We propose a novel graph decomposition algorithm for
circuits containing latch loops according to loop locality.
Thanks to this partitioning, we achieve parallel waste-
free latch AT propagation without accuracy loss.



Fig. 1: Graph representation of Flip-Flops and latches in GBA.

Fig. 2: Graph representation of latch loop in GBA.

2) We integrate an efficient algorithm using SCC-based
iteration into loop analysis to enable early detection of
divergent loops and prevent excessive iterations of AT
propagation.

3) Our algorithm has provably better runtime complexity
compared to prior works. We prove that our algorithm
runs in O(

∑
i k

2
i ) where ki denotes the number of

pins in each SCC. It is much smaller than the O(n2)
algorithm used by PrimeTime and OpenSTA where n is
the full graph size.

We integrate our algorithm into an open-source STA engine
and demonstrate an average speed-up of 12.31× over Prime-
Time and 7.3× over OpenSTA on large circuit designs.

II. PRELIMINARIES

A. Latch Loops in Graph-Based Timing Analysis

STA is typically deployed in two phases: graph-based analy-
sis (GBA) and path-based analysis (PBA). GBA uses a graph-
based approach to analyze timing across circuits, while PBA
targets specific critical paths to identify and optimize timing
violations. In GBA, the circuit is represented as a DAG, with
nodes as pins and edges as arcs carrying timing information.

In latches, timing information such as AT at output pin can
be derived from data input pin after timing checks due to their
time borrowing property, which is different from FFs. So when
representing latches in a graph, there exists an arc from data
input pin to data output pin as shown in Figure 1.

Figure 2 illustrates how a latch loop can create a feedback
loop in the extracted graph, making the conventional topologi-
cal timing propagation approach based on DAGs inapplicable.
Thus, circuits with latch loops require a distinct methodology.

B. AT Propagation and Convergence in Latch Loops

In STA, arcs in the circuit graph are annotated with mini-
mum and maximum delays to account for process variations,
creating the early/late split model for hold/setup violation
checks. In the late case of the model, the propagation of timing
information, such as ATs, via relaxation always preserves the
larger possible values during the updating process [13]. How-
ever, once feedback loops exist in circuits, the propagation of

AT must be iteratively updated until convergence. Divergence
in this process will result in unbounded increases in ATs,
leading to setup timing violations.

Unlike combinational loops, latch loops contain D-Q arcs
of latches. The relaxation process of them is more specific,
requiring setup time checks and potentially resulting in a
decreased AT result due to the change of clock domains [7],
[10]. The presence of decreased AT values is fundamental to
the convergence of ATs during loop iterations, indicating that
convergence is possible for latch loops.

C. Global Iteration for AT Propagation in Current Timers

In a DAG, AT propagation does not require repeated iter-
ations; however, loops or SCCs consisting of multiple pins
(MSCCs) necessitate them, until ATs converge or diverge.

Taking the late case as an example, current timers first
break all D-Q arcs to ensure AT propagation on the DAG.
Subsequent setup time checks determine if the Q pins’ ATs
are updated by the D pins, requiring re-updates of downstream
ATs if true. Its worst-case complexity can be up to O(n2),
leading to unacceptable runtimes with a high pin count [14].
Moreover, their iterative process lacks preemptive assessment
of potential divergence scenarios and does not terminate early
but iterates until a timing violation occurs.

Figure 3 reveals how AT propagates in global iteration in a
latch loop chain. The number of AT updates per loop continues
to grow linearly as the order of loops increases from left to
right. Assuming each update requires a fixed amount of time,
the total runtime will be the sum of these updates, increasing
quadratically with the total number of loops.

III. ALGORITHMS

To address the limitations of current timers in AT prop-
agation in circuits with latch loops, we hope to introduce
SCC-based AT iteration. According to graph theory, a directed
graph can be decomposed into a collection of SCCs [15].
This generates a DAG of SCCs, after which the longest path
algorithms can be applied to propagate AT inside each SCC,
with AT iterations carried out in topological order for each
SCC. In this case, ATs within each SCC converge before
propagating into downstream SCCs, reducing the runtime
overhead caused by repeated updates compared to the AT
propagation in Figure 3.

Following these ideas, our algorithm first decomposes the
extracted graph into SCCs. Subsequently, AT iterations are
then confined inside each SCC to reduce complexity, while
enabling parallel AT propagation between SCCs to further
improve efficiency. The overall flow of our algorithm is
shown in Algorithm 1 and Figure 4. Our algorithm will be
implemented based on the source code of OpenTimer [16].

A. Graph Decomposition and SCC Head Pin Determination

To decompose the circuit graph into SCCs firstly, we adopt
the ideas of Tarjan’s algorithm, whereby the full graph is
traversed using depth-first search (DFS) [15].

Algorithm 2 details the workings of graph decomposition.
In this algorithm, an index is assigned to each pin, with the



Fig. 3: Global AT propagation iterations of latch loop chains in current timers.

Algorithm 1: Overall-Flow-AT-Propagation(Graph G)

1 for each pin v in the circuit graph G do
2 DFS-SCC(v)
3 for each pin v in the circuit graph G do
4 DFS-Select-Head-Pin(v)
5 taskflow ← Build-AT-Prop-Taskflow()
6 execute(taskflow)

search order stored in the array dfn. The array low holds the
earliest order of any pin in the stack that can be traced back
for pin u or its subtree. We invoke Algorithm 2 on all pins in
the graph, achieving a linear complexity of O(n), where n is
the number of pins in the circuit graph [15]. Ultimately, the
pins contained in each SCC are stored in the corresponding
element of sccs. In turn, we also use scc id[pin] to store the
SCC number to which pin belongs.

Algorithm 2: DFS-SCC(Pin v).

1 index← index+ 1
2 dfn[v]← index, low[v]← index
3 Push(stack, v)
4 for each v’s fanout arc e do
5 u← destination pin[e]
6 if u is not visited then
7 mark u as visited
8 DFS-SCC(u)
9 low[v]← min(low[v], low[u])

10 else if u is in stack then
11 low[v]← min(low[v], dfn[u])
12 if low[v] = dfn[v] then
13 initialize a new SCC scc
14 while stack is not empty do
15 u← Pop(stack)
16 Pushback(scc, u)
17 assign scc id[pin] for all pins in scc
18 Pushback(sccs, scc)

Due to the property of OpenTimer’s taskflow, each task
must be assigned to an individual pin rather than an SCC.

Therefore, a head pin is selected from each SCC to receive
the AT iteration task in the whole SCC during AT propagation.

Algorithm 3 determines the head pin of each SCC by
performing DFS on all graph pins, while ensuring each pin
is visited once. During this process, each pin is checked to
see if it is the first visited pin in its SCC; if so, it is labeled
as the head pin and stored in head pin[scc].

Algorithm 3: DFS-Select-Head-Pin(Pin v).

1 if v is not visited then
2 mark v as visited
3 scc← sccs[scc id[v]]
4 if scc is not visited then
5 mark scc as visited
6 head pin[scc]← v
7 for each v’s fanout arc e do
8 u← destination pin[e]
9 if u is not visited then

10 DFS-Select-Head-Pin(u)

B. Local Iteration of AT Inside Each SCC

To avoid global iteration of AT in the current STA engines
discussed in Section II, which results in quadratic complexity,
our algorithm localizes the AT iteration inside each SCC.

It is essential to clarify that the localization of the AT
iteration occurs at the level of individual SCCs, as outlined
in Algorithm 4. For single-pin SCCs, the AT is computed by
relaxing all fanin arcs.

But for MSCCs, the iteration of AT inside each SCC is
realized by an adapted SPFA. As described in Algorithm 4,
all internal pins of the SCC must be enqueued into the pending
queue queues[scc], and the corresponding element in the array
q cnt, which tracks the number of times each pin is enqueued,
should be initialized to one.

AT propagation is then executed for each pin in the queue,
beginning with relaxations on its fanin arcs originating from
other SCCs. This process marks the relaxed arc to prevent
further relaxations, as the AT value of its source pin must have
been fixed by the time it is relaxed (further instructions will be
given in the subsection C). Therefore, excess relaxations more



Algorithm 4: AT-Prop(Pin v).

1 scc← sccs[sccs order[v]]
2 if size(scc) = 1 then
3 for each v’s fanin arc e do
4 Relax arc e
5 else
6 for each pin u in scc do
7 Enque(queues[scc], u)
8 q cnt[u]← q cnt[u] + 1
9 while queues[scc] is not empty do

10 u← Pop(queues[scc])
11 for each u’s unrelaxed fanin arc e do
12 from← source pin[e]
13 if scc id[u]= scc id[from] then
14 Relax arc e
15 for each u’s fanout arc e do
16 to← destination pin[e]
17 if scc id[u] = scc id[to] then
18 Relax arc e
19 if AT [to] is changed && to is not in

queues[scc] then
20 Enque(queues[scc], to)
21 q cnt[to]← q cnt[to] + 1
22 if q cnt[to] > size(scc) then
23 Error(Divergent Loop!)

than once will not update the AT of the destination pin again.
The necessary relaxations for the AT iteration, similar to those
in SPFA, actually occur on the arcs between pins inside the
SCC. For each pin, we relax its fanout arcs inside the SCC; if
this alters the AT of a destination pin not in queues[scc], we
should get that pin enqueued for further iteration. This is due
to the fact that the AT of this pin has not yet converged and
the updated AT may affect the ATs of its fanout pins. This
process will continue until the queue is emptied.

However, the number of queue entries for each pin must be
limited to avoid infinite iterations. For possible ATs that do
not converge, our algorithm employs a judgment mechanism
similar to SPFA. If a pin enters the queue more times than
the total number of pins in the SCC, it indicates both a non-
converging AT and a divergent loop inside the SCCs.

According to [17], the complexity of algorithm 4 adopted
from SPFA for a single SCC is O(ke), where k is the number
of pins and e is the number of arcs. Since the number of
pins and arcs in timing graphs are often similar or linear, the
complexity can be approximated as O(k2).

C. Parallel Propagation of AT Between SCCs

After the graph decomposition, the new graph can be viewed
as a DAG of SCCs, and the iteration of AT inside each SCC in
Algorithm 4 will be assigned to the head pin of each SCC as
a task. As a result, AT iteration is confined inside each SCC,
and the AT propagation between SCCs can be parallelized

after determining the dependencies between tasks based on
the connectivity relationships between SCCs.

Algorithm 5 is designed to assign the tasks of AT iteration
to the head pin of each SCC and to ensure that the correct
dependencies between tasks have been established before the
parallelization carries out. In essence, if an arc is identified
as originating from a pin in SCC A and pointing to a pin in
SCC B, AT iteration of SCC B must be carried out after that
of SCC A. This dependency stems from the characteristics of
the SCC.

Algorithm 5: Build-AT-Prop-Taskflow()

1 for each pin v in G do
2 if v is head pin of sccs[scc id[v]] then
3 tasks[v]← Emplace(taskflow,AT-Prop(v))
4 for each pin v in G do
5 v head pin← head pin[sccs[scc id[v]]]
6 for each v’s fanin arc e in E do
7 u← source pin[e]
8 u head pin← head pin[sccs[scc id[u]]]
9 Precede(tasks[u head pin], tasks[v head pin])

10 return taskflow

Proof. In a given SCC, each pin needs to relax all its fanin
arcs originating from other SCCs in Algorithm 4. This requires
ensuring that the AT results of sources pins of these fanin arcs
have converged, otherwise the localization of the AT iterations
cannot be guaranteed, leading to higher complexity. Also, if
there exist arc a pointing from SCC A to SCC B and arc b
pointing from SCC B to SCC A then A and B should have
been merged into a larger SCC.

D. Complexity Analysis
To justify the efficiency of our algorithm, we derive the

following theory results:

Theorem 1. The time complexity of the overall flow of the
algorithm above is O(

∑
i k

2
i ), where ki denotes the size of

SCC numbering i.

Proof. The time complexity has three parts, Graph decompo-
sition, SCC head pin Selection, and AT propagation. Graph
decomposition and head pin selection both take O(n) time,
as they involve a DFS traversal of the entire graph. The time
complexity of AT iteration for each SCC with ki pins is O(k2i ),
and overall complexity is their sum, O(

∑
i k

2
i ). Since

∑
i ki is

equal to n, it is clear that
∑

i k
2
i is greater than n. Therefore,

the overall time complexity of the algorithm is O(
∑

i k
2
i ).

It is clear that
∑

i k
2
i < (

∑
i ki)

2 = n2, so this method will
have a complexity advantage in the case of multiple MSCCs
considering the cost of graph decomposition.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup
Our algorithm is implemented in C++ on top of the open-

source STA engine OpenTimer [18]. Experiments are con-



Fig. 4: Overall flow of our algorithm on AT propagation.

Fig. 5: Chain of n latch loops.

TABLE I: Statistics of benchmarks.
Benchmark #Gates #Pins #MSCCs #APPS #Endpoints
SDLL 5 23 1 18 4
ELLC 1000 72000 216017 8000 18 32000
ELLC 2000 144000 432017 16000 18 64000
ELLC 3000 216000 648017 24000 18 96000
ELLC 4000 288000 864017 32000 18 128000
ac97 ctrl latch 30482 90293 564 18 10170
aes core latch 46551 135544 90 97 2828
b19 iccad latch 513256 1573945 407 2903 14388
leon2 iccad latch 3250738 8710527 5210 772 306762
leon3mp iccad latch 2513450 6807681 6249 521 225678
netcard iccad latch 3011438 8052365 6097 643 203662
vga lcd latch 285808 815885 4792 27 53182
vga lcd iccad latch 523534 1374733 5907 39 36558

APPS: Average number of pins per MSCC.

ducted on a 64-bit Linux machine with 96 cores Intel Xeon
Gold 6248R CPU at 3.00 GHz and 502 GB memory, at
different threads respectively. Previous academic methods lack
practicality and industry adoption, as discussed in Section I,
so we compare our timer with two advanced STA engines:
PrimeTime [11] and OpenSTA [12].

We validate our algorithm on two sets of benchmarks. Since
our primary objective is to examine the acceleration of AT
propagation, we preset the cell delays of these benchmarks in
each timer to eliminate discrepancies arising from different
delay computation models, and meanwhile setting the net
delays to zero for simplicity as well. In the first set, five special
cases were constructed to validate the detection of divergent
loops and to demonstrate the superiority of our algorithm in
time complexity. In the second set, to examine the advantages
of our timer on real designs, we constructed eight industrial
circuits from TAU contests [19] using the method in [20],
with some other changes to the netlist, lib and sdc files.

Fig. 6: Circuit construction for industrial benchmarks [10].

60% FFs in the initial circuits were converted into latches,
and then latches and combinational logic were duplicated, as
illustrated in Figure 6. The clocks clk 1 and clk 2 formed a
two-phase clock scheme and were set to inverted clocks with
clock phase shift T/2 and duty cycle 0.5. We have uploaded
two examples that allow readers to reproduce and observe the
prolonged PrimeTime runtimes, which stem from the presence
of divergent loops and the methodology adopted by the timer
in handling latch loop circuits. 1.

For accuracy check of our timer, it is evaluated by compar-
ing the Mean Absolute Error (MAE) of each endpoint slack
between our timer and PrimeTime. When testing runtime of
three timers, it is assessed by execution time of command re-
port timing in PrimeTime and our timer, and report checks
in OpenSTA, and they can be monitored by command time
in TCL tools. Note that all the runtime values reported are
collected by averaging 10 runs of each experiment.

B. Accuracy and Runtime Results of Industrial Benchmarks

We finally compare the runtime results obtained by three
timers at different threads, as shown in Table II. As for
accuracy, we can well match PrimeTime’s results on endpoint
slacks, with all MAEs less than 0.01%.

In eight industrial benckmarks, as depicted in Figure 7
and Table II, our timer exhibits superior accuracy with an
average speedup ratio of 12.31× and 7.3× at eight threads
compared to PrimeTime and OpenSTA, respectively. Despite
including sequential components, such as the non-parallelized
graph decomposition, our timer still achieve an average 2×
speedup at 8 threads compared to single-thread scenarios,
allowing it to outperform the baselines, even their fully par-
allelized versions. Concurrently, especially for graphs with a
greater number of MSCCs such as leon2_iccad_latch,
leon3mp_iccad_latch and netcard_iccad_latch,
our timer exhibits a more pronounced speedup up to around
20× and 15× at eight threads, which aligns with the effect of
localized AT iterations inside SCCs.

As observed in the runtime speedup at multi-threaded
tests, our timer successfully implements parallelization for
AT propagation between SCCs. Figure 8 shows runtime
values for the benchmarks leon2_iccad_latch and
leon3mp_iccad_latch at different threads. It is clear that
runtimes of three timers saturate at 8 threads and our timer
exhibits good parallelism.

1https://github.com/xiaoshixuexi/Latch-Loop-Examples



TABLE II: Overall efficiency comparison between PrimeTime, OpenSTA and our timer.

Benchmark PrimeTime RT OpenSTA RT Ours RT PrimeTime RTR OpenSTA RTR Ours TRTR
1 Thread 8 Threads 1 Thread 8 Threads 1 Thread 8 Threads 1 Thread 8 Threads 1 Thread 8 Threads 1 Thread 8 Threads

SDLL 81.65 164.26 36.40 53.08 0.005 0.008 16330 20533 7280 6635 0.63 1.00
ELLC 1000 756.61 242.67 155.68 65.31 4.31 2.36 175.56 102.83 36.12 27.67 1.83 1.00
ELLC 2000 2942.79 564.70 713.05 306.55 8.77 4.80 335.55 117.64 81.31 63.86 1.82 1.00
ELLC 3000 6562.99 1446.52 1616.72 762.08 12.89 6.45 509.15 224.27 125.42 118.15 2.00 1.00
ELLC 4000 11907.63 2453.88 3042.37 1296.47 16.71 8.21 712.61 298.89 182.07 157.91 2.04 1.00
ac97 ctrl latch 10.88 4.32 7.47 3.54 3.24 1.96 3.36 2.20 2.22 2.09 1.65 1.00
aes core latch 9.08 3.84 5.87 3.02 3.39 1.97 2.68 1.94 1.73 1.53 1.72 1.00
b19 iccad latch 371.72 117.07 184.05 74.72 36.64 20.45 10.15 5.74 5.02 3.65 1.79 1.00
leon2 iccad latch 4790.84 1484.87 2642.56 966.25 160.01 69.57 29.94 21.54 16.51 13.89 2.30 1.00
leon3mp iccad latch 4125.82 1219.47 2275.04 867.89 142.14 63.74 29.03 19.13 16.01 13.61 2.23 1.00
netcard iccad latch 3854.54 1195.05 2202.96 707.08 135.64 63.09 28.42 18.94 16.24 11.21 2.15 1.00
vga lcd latch 235.51 77.01 159.33 59.78 16.32 8.66 14.43 8.89 9.76 6.90 1.88 1.00
vga lcd iccad latch 416.11 123.75 233.71 87.90 29.21 15.92 14.25 7.77 8.00 5.52 1.83 1.00

RT: Runtime in seconds. RTR: Runtime ratio of this timer to our timer at the same thread.
TRTR: Runtime ratio of this thread number to 8 threads in the same timer.

Fig. 7: Runtime ratio of PrimeTime and OpenSTA over our timer at 8 threads.

12 4 8 16 24 32

100

1,000

Number of CPUs

R
un

tim
e

(s
)

leon2 iccad latch

PrimeTime
OpenSTA

ours

12 4 8 16 24 32

100

1,000

Number of CPUs

R
un

tim
e

(s
)

leon3mp iccad latch

PrimeTime
OpenSTA

ours

Fig. 8: Runtime values at different numbers of threads for three
timers on two benchmarks.

C. Divergent Loop Detection

Now, we examine the results on the first set of benchmarks
in Table II. Figure 2 illustrates the circuit graph for the
first special case, named single-divergent-latch-loop (SDLL),
which consists of four latches and an AND gate. This circuit
is designed to feature a divergent loop with a large clock
period and a small total loop delay. As shown in Table II,
over-iteration in PrimeTime and OpenSTA results in runtimes
ranging from 50 to 300 seconds, while our timer detects the
divergent loop in microseconds. The presence of the divergent
loop leads to timing violations and unnecessary AT iteration
propagation time, which our method effectively mitigates. This
approach not only reduces the runtime but also improves
accuracy by quickly identifying and handling such timing
anomalies.

D. Analysis on Cases of Eight-Latch-Loop-Chain

Figure 5 shows the circuit designs of the remaining four
special cases named eight-latch-loop-chain (ELLC). These
benchmarks all consist of eight latch loop chains, each chain
of which only differs in the number of latch loops.

Fig. 9: Runtime result of four ELLC cases at single thread.

As can be observed in Table II and Figure 9, the runtime
of our timer increases in a linear relation to the number of
loop chains, achieving a speedup of hundreds of times in
processing these circuits in comparison to PrimeTime and
OpenSTA in single-threaded experiments. The runtimes of the
latter two timers, on the other hand, demonstrate a clear square
relationship, which matches our statement in Section II.

V. CONCLUSION

In this work, we propose a novel STA algorithm for cir-
cuits containing latch loops. By strategically partitioning the
graph into SCCs and leveraging parallelized AT propagation,
we make full use of loop locality in latch-enabled circuits.
The innovative incorporation of the SPFA for local iteration
inside SCCs and the pre-identification of divergent loops
have reduced the worst-case complexity of the algorithm to
O(

∑
i k

2
i ) where ki is the SCC sizes. Experimental evaluations

on industrial designs confirm the superiority of our timer, with
an average speed-up of 12.31× over PrimeTime and 7.3× over
OpenSTA. Our future work includes integrating our algorithms
into timing analysis under multiple clock domains, as well as
applying it in automatic timing borrowing flows.



REFERENCES

[1] K. Kang, B. C. Paul, and K. Roy, “Statistical timing analysis using
levelized covariance propagation,” in Design, Automation and Test in
Europe. IEEE, 2005, pp. 764–769.

[2] J. Bhasker and R. Chadha, Static timing analysis for nanometer designs:
A practical approach. Springer Science & Business Media, 2009.

[3] S. Paik, L.-e. Yu, and Y. Shin, “Statistical time borrowing for pulsed-
latch circuit designs,” in 2010 15th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2010, pp. 675–680.

[4] H. Cheng, X. Li, Y. Gu, and P. A. Beerel, “Saving power by converting
flip-flop to 3-phase latch-based designs,” in 2020 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2020, pp.
574–579.

[5] N. Xiromeritis, S. Simoglou, C. Sotiriou, and N. Sketopoulos, “Graph-
based sta for asynchronous controllers,” in 2019 29th International Sym-
posium on Power and Timing Modeling, Optimization and Simulation
(PATMOS). IEEE, 2019, pp. 9–16.

[6] S. Simoglou, C. Sotiriou, and N. Blias, “Timing errors in sta-based
gate-level simulation,” in 2020 26th IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC). IEEE, 2020, pp. 1–2.

[7] R. Chen and H. Zhou, “Statistical timing verification for transparently
latched circuits,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 25, no. 9, pp. 1847–1855, 2006.

[8] X. Yuan and J. Wang, “Statistical timing verification for transparently
latched circuits through structural graph traversal,” in 2010 15th Asia
and South Pacific Design Automation Conference (ASP-DAC). IEEE,
2010, pp. 663–668.

[9] L. Zhang, J. Tsai, W. Chen, Y. Hu, and C. C.-P. Chen, “Convergence-
provable statistical timing analysis with level-sensitive latches and
feedback loops,” in Proceedings of the 2006 Asia and South Pacific
Design Automation Conference, 2006, pp. 941–946.

[10] B. Li, N. Chen, and U. Schlichtmann, “Statistical timing analysis for
latch-controlled circuits with reduced iterations and graph transforma-
tions,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 31, no. 11, pp. 1670–1683, 2012.

[11] Synopsys, PrimeTime, version: S-2021.06-SP1, Synopsys,
Inc., Mountain View, California, USA, 2021, synopsys,
Inc. Software. [Online]. Available: https://www.synopsys.com/
implementation-and-signoff/signoff/primetime.html

[12] “OpenSTA, version: 2.5.0,” https://github.com/abk-openroad/OpenSTA.
[13] R. Chen, L. Zhang, V. Zolotov, C. Visweswariah, and J. Xiong, “Static

timing: back to our roots,” in 2008 Asia and South Pacific Design
Automation Conference. IEEE, 2008, pp. 310–315.

[14] M. Panda and A. Mishra, “A survey of shortest-path algorithms,”
International Journal of Applied Engineering Research, vol. 13, no. 9,
pp. 6817–6820, 2018.

[15] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
journal on computing, vol. 1, no. 2, pp. 146–160, 1972.

[16] T.-W. Huang and M. D. Wong, “OpenTimer: A high-performance timing
analysis tool,” in Proc. ICCAD. IEEE, 2015, pp. 895–902.

[17] “Segmented spfa: An improvement to the shortest
path faster algorithm,” https://konaeakira.github.io/posts/
segmented-spfa-an-improvement-to-the-shortest-path-faster-algorithm.
html.

[18] T. Huang, G. Guo, C. Lin, and M. D. F. Wong, “OpenTimer v2: A New
Parallel Incremental Timing Analysis Engine,” IEEE TCAD, vol. 40,
no. 4, pp. 776–786, 2021.

[19] J. Hu, G. Schaeffer, and V. Garg, “TAU 2015 contest on incremental
timing analysis,” in Proc. ICCAD. IEEE, 2015, pp. 882–889.

[20] T. G. Szymanski, “Computing optimal clock schedules,” in [1992]
Proceedings 29th ACM/IEEE Design Automation Conference. IEEE,
1992, pp. 399–404.


