
HeteroSTA: A CPU-GPU Heterogeneous Static
Timing Analysis Engine with Holistic Industrial

Design Support
Zizheng Guo1,2, Haichuan Liu1, Xizhe Shi1, Shenglu Hua1, Zuodong Zhang2, Chunyuan Zhao1,

Runsheng Wang1,2,3, Yibo Lin1,2,3,*

1School of Integrated Circuits, Peking University, 2Institute of EDA, Peking University
3Beijing Advanced Innovation Center for Integrated Circuits, *Corresponding author: yibolin@pku.edu.cn

Abstract—We introduce in this paper, HeteroSTA, the first
CPU-GPU heterogeneous timing analysis engine that efficiently
supports: (1) a set of delay calculation models providing versatile
accuracy-speed choices without relying on an external golden
tool, (2) robust support for industry formats, including especially
the .sdc constraints containing all common timing exceptions,
clock domains, and case analysis modes, and (3) end-to-end
GPU-acceleration for both graph-based and path-based timing
queries, all exposed as a zero-overhead flattened heterogeneous
application programming interface (API). HeteroSTA is publicly
available with both a standalone binary executable and an
embeddable shared library targeting ubiquitous academic and
industry applications. Example use cases as a standalone tool, a
timing-driven DREAMPlace 4.0 integration, and a timing-driven
global routing integration have all demonstrated remarkable
runtime speed-up and comparable quality.

I. INTRODUCTION

With the sheer increase in the VLSI design volume as well
as the growing demand for fast turnaround time and rapid
design iteration, heterogeneous CPU/GPU-accelerated EDA
has garnered wide attention as an extremely important aspect
of next-generation EDA systems. With years of development,
GPU acceleration techniques have covered most of the major
EDA stages, including RTL simulation [1]–[4], logic syn-

thesis [5]–[10], partitioning [11]–[16], placement [17]–[27],
routing [28]–[36], design rule checking [37], [38], timing
signoff [39]–[49], etc. Among these efforts, static timing
analysis (STA) is one of the central tasks because all major
stages embed STA in their timing optimization inner loop,
where STA is invoked thousands of times.

The advancement in heterogeneous CPU/GPU STA algo-
rithms has brought orders-of-magnitude speedup to timing
analysis, covering all major steps in a typical and complete
STA engine (delay calculation [39]–[41], graph propaga-
tion [42]–[44], exception handling [45], and path search [46]–
[49]). Since then, we have witnessed the early-stage de-
velopment of timing-driven EDA flows that are end-to-end
heterogeneous [19], [24]–[26]. However, existing research all
focuses on the acceleration of specific STA steps without
integrating all algorithms into a rich-featured, readily-available
heterogeneous STA library. Prior timing-driven EDA flows
were thus all forced to implement their own small proof-of-
concept heterogeneous STA modules that have poor design
compatibility (e.g., industrial Verilog, SDC, and SPEF), low
analysis accuracy, and inferior runtime efficiency.

The gap between research and application in the GPU-

Liberty stdcell
library (.lib)

Gate-level verilog (.v)
*hierarchical netlist
supported OR

Flattened netlist
(in CPU memory)

SPEF parasitics
(.spef) OR

Pin (x,y) & unit RC
(in CPU/GPU memory)
*built-in heterogeneous
 Steiner tree generation

OR

Flattened parasitics
(in CPU/GPU memory)

Clocks, ports, and
timing exceptions
(.sdc)

Standard delay
format (.sdf) OR

Delay list for all arcs
(in CPU/GPU memory)

WNS/TNS, pin slack
(in CPU/GPU memory)

Human-readable
path report (.txt)

Flattened path array,
pin & path metadata
(in CPU/GPU memory)

OR

HeteroSTA

Industry File Inputs
*holistic support

API Inputs
*zero-overhead integration

Reports
*designer friendly

API Outputs
*zero-overhead integration

with GPU

Conventional
CPU engines

10× Faster

Online download, demos, documentation:
https://heterosta.pkueda.org.cn/

Fig. 1: HeteroSTA supports various input and output combinations featuring holistic industry file format support and a zero-cost
abstraction interface. It delivers an order of magnitude STA speed-up for heterogeneous EDA applications.

accelerated STA field has motivated us to develop a holistic
heterogeneous STA library, HeteroSTA, targeting widespread
academic and industry adoption. With such a library available
to the public, both researchers and engineers can bootstrap
their research and development of EDA algorithms and flows
that benefit greatly from the much faster encapsulated STA
function, without having to deal with the enormous engineer-
ing details in implementing a full STA engine.

Compared to STA libraries available prior to this work,
e.g., OpenTimer [50], OpenSTA [51], GCS-Timer [41], and
INSTA [43], HeteroSTA is the first heterogeneous STA engine
with holistic industrial design support. It is self-contained: it
does not require an external golden tool to perform delay cal-
culation or exception preprocessing. It is industry-compatible:
it accepts industry-standard file formats like gate-level Verilog
(with hierarchical support), SPEF parasitics, SDC constraints
(covering clocks, ports, and all common timing exception
definitions), and the Liberty cell library. It is integration-
ready: as a library and a set of C/C++ API (Figure 1), it
is ready to be embedded into different applications, with a
novel heterogeneous API design ensuring zero-overhead in
data communication between tools and the STA engine.

HeteroSTA is made available from today and can be down-
loaded at this link: 1, with online documentation and discus-
sion available. Together with the release of the library, we also
release two demos integrating HeteroSTA into the open-source
timing-driven DREAMPlace 4.0 [52] and Efficient-TDP [53]
placers, both available on GitHub2. We also integrated Het-
eroSTA into a GPU-accelerated global routing flow. After
replacing the original timers in these representative flows with
HeteroSTA, we achieve significant end-to-end speedup without
quality degradation.

The rest of this paper is organized as follows. Section II
discusses the challenges of a heterogeneous STA library with
a review of current STA tools available. Section III demon-
strates design details of HeteroSTA. Section IV presents the
experimental results including the runtime performance and
accuracy of HeteroSTA as both a standalone timer and an
integrated STA engine in timing-driven placement and global
routing workloads. Finally, Section V concludes the paper.

II. CHALLENGES OF A HETEROGENEOUS STA LIBRARY

STA determines circuit performance by providing graph-
based and path-based timing criticality reports given a circuit
netlist, a cell library, a list of clocks and exceptions, and
a parasitics annotation [54]. In a typical EDA flow, STA is
itself an essential stage managing timing signoff post physical
design. More importantly, STA is integrated as a subprocess in
many other stages to guide circuit performance optimization
– such optimizations are usually formulated as an “analyze-
then-optimize” loop, where STA plays a central role in locating
timing bottlenecks (Figure 2).

1https://heterosta.pkueda.org.cn/
2https://github.com/limbo018/DREAMPlace, and https://github.com/PKU-

IDEA/Efficient-TDP-HeteroSTA

(2) STA

Analyze

(1) Netlist Input
& RC Extract

(3) Timing
Report

(4) Design
Adjustment

Optimize with Guide

Repeat Until Convergence, up to 103+ iterations

Logic
Synthesis

Global
Placement

Detailed
Placement

&
PlaceOpt

CTS
&

Routing

ECO &
Timing
Sign-off

And-inverter
graph,
No RC

required

NLDM+Fan-in
delay model/

Direct
annotation

Pin
slack

Transform logic/
cell mapping

RC estimate:
Flatten

RC input
- OR -

Built-in
Steiner tree
RC extract.

Elmore+NLDM
delay model

Pin
slack

Move cells

Elmore+NLDM
delay model
+ calibration

Critical
paths
report

Move/resize
cells,

insert buffer

Layer-aware
RC estimate:
Flatten RC

Elmore+NLDM
or Arnoldi/CCS

CCS+SI noise,
CPPR, MCMM,
latch, groups,
distributed…

Pattern/
Solver-based
Flatten RC

Critical
paths
report

Critical
paths
report

Prioritize/
rip-up
reroute

ECO

(Bold Green: built-in support in HeteroSTA 1.0)
Fig. 2: STA is heavily used in design flows: a fast timer is
critical in speeding up design iterations. Different stages may
require customized STA inputs, outputs, and functions.

Due to their frequent reuse, core STA engines are packaged
as libraries that can be embedded into other flows via an
application programming interface (API). Such APIs are often
kept for internal use in commercial EDA companies, and
their STA engines (e.g., PrimeTime [55] and Tempus [56])
are only released as standalone tool executables with which
interactions are mostly text-based (files or Tcl scripts). Instead,
academic EDA flows often embed open-source STA libraries
like OpenSTA [51] and OpenTimer [50] instead when com-
mercial tools are unavailable and to avoid inefficiencies in
text-based interfaces.

The timing reports mismatch between the golden
commercial STA engines and the currently available,
embeddable STA libraries is one of the major challenges
that HeteroSTA tries to resolve. We identify two core issues
that are accountable for the mismatch: delay model accuracy
and timing exception compatibility. Accurately compute the
cell and net delays at sub-micron nodes requires advanced
circuit models beyond the current widely-used Elmore delay
model. Timing exceptions such as false paths, multi-cycle
paths, case analysis, and cross clock region paths (usually
defined in .sdc files) can significantly complicate the data
structures and states in timing propagation implementation
and open-source STA engines often have limited or buggy
support.

Currently, none of the publicly-available STA libraries
have resolved both issues. The recent work INSTA [43]
has presented remarkable correlation with commercial tools.

However, we note that it does not intend to address these
issues by itself – instead, INSTA relies on a golden com-
mercial STA engine to provide delay annotations and then
performs timing propagation and slack calculation based on
these annotations. These calculations are only part of the late
steps of timing analysis that are closer to the generation of
optimization guides. Furthermore, in our experiments, we will
show incorrect results from INSTA when handling practical
timing exceptions in timing propagation.

Heterogeneous CPU/GPU-accelerated EDA flows have
demonstrated orders-of-magnitude runtime speedup and un-
precedented scalability, enabling rapid design iteration, faster
time-to-market, and more efficient design space exploration.
Therefore, they have been regarded as promising directions
for future EDA systems. A heterogeneous EDA flow requires
a heterogeneous STA library to achieve its peak performance.
STA is itself known as a runtime bottleneck in the optimization
loop. Moreover, without a GPU-accelerated STA engine, the
data interface between the GPU-accelerated optimization loop
and the CPU-based STA engine would incur large back-and-
forth CPU-GPU data movement cost, as we observe in such
flows in reality [52], [53].

The demand on a STA library that is natively heterogeneous
introduces new major challenges on top of existing ones. STA
consists of many distinct graph-based algorithms that are hard
to parallelize with GPU’s single-instruction-multiple-threads
(SIMT) model. Fortunately, these years have witnessed novel
algorithms and data structures that help in bridging the com-
pute architecture gap and making STA massive parallel, but
how to wrap these individual contributions into a comprehen-
sive STA software remains uncertain. In addition to the speed
of STA itself, the overall efficiency of the heterogeneous-STA-
powered EDA flow is heavily determined by the API design
of the STA library. OpenTimer and OpenSTA expose object-
oriented programming (OOP) APIs that work on individual
cells, nets, or pins. Such OOP-based APIs are no longer
feasible for heterogeneous data communications due to the
high translation overhead of data structures [39]. Ideally,
the communication between heterogeneous STA libraries and
EDA flows should be based on a set of zero-overhead het-
erogeneous APIs, which is highly nontrivial without existing
practices to follow.

III. HETEROSTA

As presented in Figure 1, HeteroSTA features both a ver-
satile support for industrial file formats and a zero-cost data
API designed for heterogeneous integration. To achieve this,
HeteroSTA applies a modularized software design consisting
of parsers, netlist database, graph-based STA, and path-based
STA. Design constraints are parsed with a built-in Tcl inter-
preter and dispatched to different levels of abstraction. Figure 3
presents a detailed view of the architecture of HeteroSTA.

Industry file format parsers. We implement a set of high-
performance parsers for industry-standard formats, including
gate-level Verilog (.v), Liberty cell library (.lib), delay
annotation (.sdf), and standard parasitics (.spef). Our

Fast & robust parser set

Verilog Liberty SPEFSDF
Tcl (SDC)

Interpreter

Heterogeneous Netlist DB
Metadata:

Pin direction, Cell types, Constant
nets, Bused wires/pins, …

Net CSR

Cell CSR

Graph-based STA

Flatten
netlist
input

get_pins/ports/nets/cells, current_design
Registered Tcl commands:

Industry file formats Design constraints

Pin slew, arc delay, constraint arcs, cases

Timing graph (net/cell arcs)

Elmore model

Levelization

 set_input_transition, set_driving_cell,
set_load, set_drive, set_ideal_network,
set_disable_timing, set_case_analysis,
set_max_transition/fanout/capacitance,

get_lib_cells, get_lib_pins

Registered Tcl commands:

Path-based STA

Delay annotations

Arnoldi model

Clock waveforms, generated clocks,
clock sense, propagated/ideal clocks

Input port delays, output port arrivals

Timing exceptions => tag graph

all_clocks, get_clocks, all_inputs/outputs,
create_clock, create_generated_clock,

set_propagated_clock, set_clock_latency(limited),
set_input_delay, set_output_delay, set_sense,

set_false_path, set_multicycle_path,
set_min_delay, set_max_delay, set_clock_groups

Registered Tcl commands:

/

Pin slacks, WNS/TNS, top-k path reports/

Flatten
RC input

Pin
position,
unit RC

GPU
Steiner

External
delay
annot.

/

Fig. 3: The modular design of HeteroSTA showing inputs,
outputs, and data interactions between submodules.

parsers are implemented with byte-level parsing expression
grammar (PEG) that features a memory-efficient single-pass
parsing strategy. We support streamed parsing and the parsing
of gzipped inputs. Our gate-level Verilog parser supports hier-
archical designs, buses, assignments, and constant wires (e.g.,
1’b0). Our Liberty parser is verified on several industrial 7–
14 nm PDKs with slew derates, when-guarded timing arcs, pin
functions, etc. All parsers support multi-threaded parsing: the
Verilog, SDF, and SPEF parsers can run multi-threaded on a
single file input by splitting the file heuristically into chunks,
while the Liberty parser can read multiple .lib files from
modern PDKs in parallel.

Tcl interpreter-based timing exceptions manager. We embed
a standalone Tcl script interpreter in HeteroSTA to handle
design constraints in .sdc files. This enables HeteroSTA to
process advanced scripted SDCs, such as the ones with ex-
pressions, for-loops, condition branches, etc. SDC commands
in the Tcl interpreter are registered by individual HeteroSTA

function modules across levels of abstraction (Figure 3).
Heterogeneous netlist database. We store the structure of

the netlist as a central gate-level flattened netlist database.
Rather than based on OOP styles, this database is natively
flattened represented by compressed sparse rows (CSR) edge
lists. We provide two ways to initialize this database. By
inputting a Verilog, HeteroSTA builds the netlist database itself
recursively through the hierarchy. Alternatively, HeteroSTA
accepts external net and cell CSR arrays directly from a
heterogeneous EDA flow outside, e.g., DREAMPlace. The
latter way eliminates the need to rebuild the netlist or maintain
pin indices mappings for STA invocated by other flows.

Parasitics (RC) inputs. HeteroSTA accepts 3 ways to in-
put parasitics (RC) annotations. Annotations can be given
through industry-standard .spef files with built-in parsers.
For a heterogeneous optimization loop, parasitics are usually
generated on-the-fly with an algorithm, so we also provide
ways to directly send RC to HeteroSTA without file-based
communications. One general way to do this is through a
flattened RC interface, where a user packs the generated RC
into a set of predefined CSR structures on either CPU or
GPU – this is useful in timing-driven routing where the flow
has control over the layer-based RC generation algorithms.
For the placement context, we also embed a built-in Steiner
tree-based RC extraction module based on GPU-accelerated
FLUTE [29]. A placer only needs to provide HeteroSTA with
pin positions and unit resistance/capacitance values along x/y
directions and HeteroSTA will run built-in FLUTE to generate
RC estimations and incorporate them in delay calculation.

Delay models. HeteroSTA currently supports two delay
calculators: the simple classical Elmore delay calculator, and
an Arnoldi-based reduced-order model. The Elmore model
is the fastest yet not accurate enough in late design stages,
where Arnoldi might be a better option. Our delay calculator
framework is extensible and in the future we plan to add CCS
delay models in the next release of HeteroSTA.

Report options. HeteroSTA supports a variety of timing
reports to fit different design needs, including delay annota-
tions, WNS/TNS, pin slacks, and top-k path reports. Delay
annotations can be in the standard .sdf file output as well
as in-memory delay arrays directly. Path reports can be con-
trolled with top-k, per-endpoint report limit, and slack-less-
than thresholds. The format of path report can be human-
readable plain texts as well as a flattened CSR-based path
pin arrays with slacks and other useful metadata. All output
arrays can be on CPU or GPU at user’s option, enabling fully
heterogeneous optimization loops where the majority of design
data never leaves GPU memory.

IV. EXPERIMENTAL RESULTS

We release HeteroSTA as a Linux shared library (.so), a
set of C header files (.h), example sources, and an online
documentation.3 Under the hood, HeteroSTA is implemented

3https://heterosta.pkueda.org.cn/documentation

in Rust, C++, and CUDA. HeteroSTA supports both OpenMP-
based CPU multithreading and CUDA-based GPU massive
parallelism. Our experiments aim to evaluate HeteroSTA in
two aspects: (1) its correlation with commercial tool Prime-
Time, in both delay calculation accuracy (Section IV-A) and
timing exception correctness (Section IV-B); (2) its end-to-
end performance benefit when integrated into representative
heterogeneous GPU-accelerated EDA flows, including two
timing-driven global placement flows (Section IV-C) and one
timing-driven global routing flow (Section IV-D). All our
experiments are run on a Linux machine with 64 Intel Xeon
Platinum 8358 CPU cores, 1 TB memory, and 8 NVIDIA
A100-SXM4-80GB GPUs. Unless otherwise noted, we run
all benchmarks 3 times and report average runtime, using 16
CPU cores and 1 GPU (if applicable), which is when their
performance generally saturates.

A. Delay Calculation Accuracy

We test the delay modeling accuracy by comparing the delay
annotations generated by HeteroSTA, PrimeTime, and Open-
STA on the TAU 2015 contest benchmarks [57] transpiled to a
14 nm process [40]. Both HeteroSTA and OpenSTA use their
respective NLDM+Arnoldi delay model, while PrimeTime
uses its basic (non-CCS) calculation mode. 4 Table I shows a
detailed comparison of both runtime and accuracy. HeteroSTA
achieves better correlation (R2 and MAE) than OpenSTA
compared to PrimeTime. Specifically, HeteroSTA achieves an
average R2 score of 0.985 and a MAE of 2.34 ps. Our accuracy
is also stable and consistent across all designs we have tested.

Thanks to heterogeneous CPU/GPU acceleration, the run-
time of HeteroSTA significantly outperformed both PrimeTime
and OpenSTA among all benchmarks. We are on average
4.89× faster than PrimeTime and 10.04× faster than Open-
STA. On the largest design leon2, we are 7.56× and 14.53×
faster, respectively.

B. Timing Exception Correctness

The timing propagation step involves handling of complex
timing exceptions, which is another important source of mis-
match. By instructing PrimeTime to write out its delay calcu-
lation results, we are able to isolate the delay calculation and
timing propagation steps and test them separately – the latter
of which is exactly the problem formulation of INSTA [43],
our baseline. INSTA expects a set of .csv files containing
circuit startpoint clock periods, endpoint required arrival times,
arc delays, and a set of “timing-disabled” pins, which we all
generate using PrimeTime Tcl scripts. The timing-disabled
pin list captures some of the false path settings but not all
of them, because false path exceptions may contain multiple
-through patterns that eliminate only paths that go through
a predefined pin sequence. Such patterns cannot be replaced by
disabling certain pins in the graph completely. Moreover, there
are other types of exceptions unhandled in INSTA, including
multi-cycle paths, set min/max delays, etc.

4CCS support is in our roadmap for next-version release and is not yet
available in HeteroSTA 1.0.

TABLE I: Comparison of runtime, timing arc delay correlation (R2 and MAE) between PrimeTime, OpenSTA, and HeteroSTA.
PrimeTime is set as the golden result. Runtimes are in milliseconds.

Benchmark
Statistics PrimeTime (16C) OpenSTA (16C) HeteroSTA (16C + 1 GPU)

#Cells #Nets #Pins Runtime RTR MAE R2 Runtime RTR MAE R2 Runtime RTR MAE R2

aes_core 22938 23199 66221 738.70 2.26 0.00 1.000 1092.93 3.34 0.18 0.995 326.91 1.00 0.24 0.988
b19 255278 255300 776320 7165.86 5.69 0.00 1.000 11246.62 8.92 10.02 0.977 1260.33 1.00 4.84 0.985
des_perf 138878 139112 371587 2592.86 3.27 0.00 1.000 4558.99 5.75 0.65 0.981 792.54 1.00 0.54 0.993
edit_dist 147650 150212 416609 3696.77 4.62 0.00 1.000 10136.41 12.66 1.05 0.978 800.55 1.00 1.05 0.984
fft 38158 39184 116139 1065.16 2.88 0.00 1.000 2049.21 5.54 0.68 0.979 370.17 1.00 0.91 0.973
leon2 1616369 1616984 4178874 41594.73 7.56 0.00 1.000 79924.12 14.53 6.01 0.963 5500.07 1.00 1.76 0.993
leon3mp 1247725 1247979 3267993 32634.40 7.34 0.00 1.000 76333.45 17.17 10.00 0.976 4446.62 1.00 4.77 0.985
matrix_mult 164040 167242 475186 3124.04 3.26 0.00 1.000 9964.24 10.41 0.90 0.983 957.29 1.00 1.04 0.976
mgc_edit_dist 161692 164254 444693 5244.76 5.72 0.00 1.000 11713.04 12.77 3.58 0.921 917.38 1.00 2.40 0.988
mgc_matrix_mult 171282 174484 489670 5299.49 6.25 0.00 1.000 9520.60 11.22 2.70 0.932 848.20 1.00 2.40 0.969
netcard 1496719 1498555 3901343 34789.72 6.35 0.00 1.000 80598.09 14.72 9.00 0.984 5476.07 1.00 5.78 0.985
pci_bridge32 40790 40950 108172 1049.68 2.78 0.00 1.000 1539.64 4.08 1.34 0.992 377.05 1.00 0.66 0.998
vga_lcd 259067 259152 662179 6099.74 5.63 0.00 1.000 10167.42 9.39 6.41 0.988 1083.08 1.00 4.00 0.984

Average 11161.22 4.89 0.00 1.000 23757.29 10.04 4.04 0.973 1781.25 1.00 2.34 0.985

TABLE II: Comparison of endpoint slack correlation (R2) between INSTA [43] and HeteroSTA under simple and complex
SDC exceptions. PrimeTime is set as the golden result.

Benchmark
Statistics Simple SDC Test Complex SDC Test

#Pins #Edges #Cells #FPs #MCPs PT INSTA HeteroSTA #FPs #MCPs PT INSTA HeteroSTA

tau2015 crc32d16N 738 848 246 0 0 1.000 0.996 0.998 0 2 1.000 0.923 0.998
usb phy ispd 1759 2105 604 0 0 1.000 0.999 1.000 0 3 1.000 0.962 1.000
aes core 62142 80420 21347 0 0 1.000 0.999 1.000 17 65 1.000 0.997 1.000
tau2015 softusb navre 14377 18538 4653 0 0 1.000 1.000 1.000 5 14 1.000 0.987 1.000
pci bridge32 ispd 87435 106840 30673 0 0 1.000 0.998 0.999 180 911 1.000 0.989 0.999
cordic ispd 120378 154979 41601 0 0 1.000 1.000 1.000 13 73 1.000 0.953 1.000
fft ispd 101375 127510 32281 0 0 1.000 1.000 1.000 23 121 1.000 1.000 1.000
tau2015 tip master 56151 66792 18851 0 0 1.000 1.000 1.000 14 81 1.000 0.698 1.000

PT: PrimeTime. #FPs: number of false path exceptions. #MCPs: number of multi-cycle paths.
INSTA and HeteroSTA both read in SDF delay annotations generated by PrimeTime to bypass delay calculation and only focus on timing propagation and
exception handling correctness. R2 scores under 0.99 but above 0.95 are colored brown, while scores under 0.95 are colored red.
We note that INSTA always calculate top-256 arrival times for every pin due to its CPPR approximation trick and this feature is currently partly hard-coded
into its binary CPython extension and thus we were unable to switch it off. As a result, we can only use a set of small benchmarks from TAU 2015 contest
to avoid GPU memory overflow in INSTA. We did not report runtime because (1) the benchmarks are too small to provide valuable runtime comparison,
and (2) it would be unfair for INSTA since it computes 256× more arrival times.

By generating a .sdf file containing all delay an-
notations, we are able to compare our endpoint slacks
with INSTA directly. The results are shown in Ta-
ble II. We use two sets of design constraints for
every benchmark. The simple constraints contain only
clock definitions (create_clock) and port annotations
(set_input_delay and set_output_delay). The
complex constraints additionally contain randomly-sampled
set_false_path and set_multicycle_path excep-
tions, in approximately 1:5 ratio. With the simple constraints,
both INSTA and HeteroSTA can achieve 0.999 correlation
with PrimeTime endpoint slacks. However, the correlation of
INSTA degrades severely given the complex constraints, down
to 0.698 R2, whereas HeteroSTA maintains 0.999 correlation
even with timing exceptions.

C. Case Study: Timing-Driven Global Placement

We integrate HeteroSTA into two state-of-the-art open-
source timing-driven global placement flows, DREAMPlace
4.0 [52] and Efficient-TDP [53]. Both of the flows are based on
the GPU-accelerated DREAMPlace for global placement and
the CPU-based OpenTimer for timing analysis. Their flows
suffer from severe runtime overhead due to frequent CPU-

GPU data transfer and the translation between flattened and
OOP-style data structures.

By simply substituting OpenTimer with HeteroSTA in their
flows and leave other algorithms unchanged, we achieve
significant end-to-end runtime speedup in both of the flows, as
shown in Table III on ICCAD 2015 contest benchmarks [58].
In DREAMPlace 4.0, the runtime of the entire flow has been
accelerated by 4.5× on average. In Efficient-TDP, the end-to-
end flow runtime has been accelerated by 5.77× on average.
All these runtime speedups have come with equal or slightly
better WNS and TNS at the end of their optimization loops.
These results have proven the necessity and effectiveness of
HeteroSTA as a heterogeneous STA library in future fully-
heterogeneous physical design flows.

We note that this also demonstrates the generality of
HeteroSTA, as DREAMPlace 4.0 and Efficient-TDP use the
STA engine differently. DREAMPlace 4.0 is based on back-
propagated pin slacks whereas Efficient-TDP is based on top-
k critical paths. HeteroSTA supports both STA report styles
efficiently and can be applied to a large range of applications.
We have released our code changes to DREAMPlace 4.0 and
Efficient-TDP on GitHub as HeteroSTA integration demos and

TABLE III: Comparison of TNS (×105 ps), WNS (×103 ps), HPWL (×106), and runtime among DREAMPlace 4.0 [52],
Efficient-TDP [53], and their respective integrations with HeteroSTA. Runtimes are in seconds.

Benchmark DREAMPlace 4.0 [52] DREAMPlace 4.0 [52] + HeteroSTA Efficient-TDP [53] Efficient-TDP [53] + HeteroSTA
TNS WNS HPWL Runtime TNS WNS HPWL Runtime TNS WNS HPWL Runtime TNS WNS HPWL Runtime

superblue1 -87.91 -14.23 493.86 526.45 -59.62 -12.58 449.19 112.35 -15.71 -7.77 418.73 594.72 -16.39 -7.65 418.83 129.89
superblue3 -48.74 -15.10 483.06 626.18 -59.28 -15.52 476.63 110.15 -19.98 -11.72 462.68 607.01 -19.88 -11.96 462.54 143.63
superblue4 -145.90 -12.84 334.05 231.97 -150.46 -12.80 333.91 75.42 -87.09 -9.38 317.47 1589.17 -91.69 -8.78 317.72 104.20
superblue5 -95.79 -29.55 536.72 539.41 -92.16 -25.79 523.97 139.39 -61.11 -24.65 477.40 797.55 -62.65 -23.99 483.98 159.44
superblue7 -59.74 -15.22 603.61 736.89 -61.86 -15.22 604.46 174.66 -50.91 -15.22 597.33 791.24 -37.80 -15.22 597.78 200.10
superblue10 -655.36 -23.11 1087.73 917.77 -628.81 -22.17 1042.94 244.52 -559.76 -24.10 911.92 1305.33 -567.71 -23.60 911.38 272.70
superblue16 -63.69 -10.02 459.08 318.42 -51.93 -11.87 467.60 55.66 -21.91 -9.03 474.88 300.53 -18.51 -9.85 463.77 81.25
superblue18 -46.75 -11.53 248.83 279.61 -47.34 -11.73 244.39 48.80 -16.58 -6.73 234.92 277.85 -15.70 -6.83 234.41 59.36

Average Ratio 2.511 1.313 1.080 3.712 2.287 1.292 1.055 0.813 1.058 1.002 1.001 5.772 1.000 1.000 1.000 1.000

Our HeteroSTA integration code for both baselines are released on GitHub: https://github.com/limbo018/DREAMPlace, https://github.com/PKU-
IDEA/Efficient-TDP-HeteroSTA. Efficient-TDP had a few bugs that made it non-deterministic, which we fixed to ensure reproducibility.

TABLE IV: The ablation study of timing, power, and congestion in a HeteroSTA-powered timing-driven global routing flow
based on HeLEM-GR [34].

Benchmark WNS TNS Power Congestion IO RT (s) Optim. RT (s)
ID Name #Nets w/o w w/o w w/o w w/o w Read .v Read .sdc w/o w

1 ariane_v 123900 -0.503 -0.365 -1263.5 -997.9 0.646 0.646 6625796 6662339 1 3 4 6
2 bsg_v 736883 -0.444 -0.388 -10504.2 -9602.9 3.052 3.053 24503278 22947622 9 8 10 19
3 nvdla_v 199481 -67.563 -56.273 -579481.9 -515380.2 2.942 2.938 13251396 13475963 1 2 5 12
4 tile_v 136120 -0.670 -0.387 -3405.3 -1711.6 0.145 0.144 2260103 2689765 1 2 4 7
5 group_v 3274611 -0.443 -0.327 -28230.2 -17619.7 7.643 7.582 70923835 67934255 31 32 44 79
6 cluster_v 12047279 -0.416 -0.247 -85758.7 -52800.0 23.398 23.150 349322586 244407995 136 131 124 261
7 ariane_b 105924 -1.418 -0.645 -444.0 -111.5 0.156 0.156 4473420 4371048 1 2 5 7
8 bsg_b 768239 0.000 0.000 0.0 0.0 0.305 0.305 26635950 22506663 9 8 15 23
9 nvdla_b 157744 0.000 0.000 0.0 0.0 0.136 0.136 13465281 13242875 1 1 6 9
10 tile_b 135814 -0.570 -0.353 -2430.7 -1312.2 0.144 0.144 2136877 2087873 1 2 3 7
11 group_b 3218496 -0.661 -0.404 -47936.6 -27116.0 8.357 8.192 71610825 68117588 31 34 45 78
12 cluster_b 12168735 -0.520 -0.196 -78834.9 -37832.8 24.179 24.021 248823650 235469814 137 140 128 199

Average Ratio 1.000 0.700 1.000 0.681 1.000 0.996 1.000 0.957 1.000 1.810

w/o: without timing-driven routing; w: with HeteroSTA-powered timing-driven routing.
IO RT: file I/O runtime, including netlist read and database initialization; Optim. RT: the timing-driven routing optimization loop runtime.

for the ease of reproducibility.

D. Case Study: Timing-Driven Global Routing

In addition to global placement, we have also integrated
HeteroSTA to other physical design flows such as GPU-
accelerated global routing. Our timing-driven router is based
on the GPU-accelerated global router HeLEM-GR [34] and
powered by HeteroSTA. It has won the first place at the
ISPD 2025 performance-driven large-scale global routing con-
test [59]. Table IV shows an ablation study of timing-driven
optimization in the heterogeneous global routing flow. All
metrics including WNS, TNS, power, and routing congestion
have been improved remarkbly with HeteroSTA in the loop
providing real-time timing feedback. Although the one-time
initialization (reading netlist and constraints) takes a lot of
additional time compared to the flow without timing-driven
optimization, we note that optimizations such as persistent
database across design stages are possible in a more realistic
flow beyond the contest benchmarks.

V. CONCLUSION

This paper presents HeteroSTA, the first CPU-GPU het-
erogeneous STA engine with holistic industrial design sup-
port, powered by a self-contained advanced Arnoldi delay
calculator, rich support for timing exceptions, and a zero-
overhead heterogeneous API targeting widespread adoption

in heterogeneous EDA flows. As a STA engine, HeteroSTA
provides comparable arc delay and slack correlation to leading
commercial tools. As a heterogeneous library, HeteroSTA
brings remarkable end-to-end runtime speedup to various het-
erogeneous physical design optimization flows. In the future,
we plan to extend HeteroSTA to support other uncovered
functionalities in Figure 2, especially CCS and other sign-off
related features.

ACKNOWLEDGE

This work is supported in part by the Natural Science
Foundation of Beijing, China (Grant No. Z230002), and the
111 Project (B18001).

REFERENCES

[1] H. Qian and Y. Deng, “Accelerating RTL simulation with GPUs,” in
Proc. ICCAD. San Jose, CA, USA: IEEE, 2011, pp. 687–693.

[2] D.-L. Lin, H. Ren, Y. Zhang, and T.-W. Huang, “From RTL to CUDA:
A GPU acceleration flow for RTL simulation with batch stimulus,” in
Proc. ICPP, 2022.

[3] Y. Zhang, H. Ren, and B. Khailany, “GL0AM: GPU Logic Simulation
Using 0-Delay and Re-simulation Acceleration Method,” in Proc. IC-
CAD. New York, NY, USA: IEEE, 2024, pp. 1–9.

[4] Z. Guo, Y. Zhang, R. Wang, Y. Lin, and H. Ren, “GEM: GPU-
accelerated emulator-inspired RTL simulation,” in Proc. DAC. IEEE,
2025.

[5] S. Lin, J. Liu, T. Liu, M. D. F. Wong, and E. F. Y. Young, “Novelrewrite:
node-level parallel aig rewriting,” in Proc. DAC. New York, NY, USA:
ACM, 2022, p. 427–432.

[6] G. Pasandi, S. Pratty, D. Brown, Y. Zhang, H. Ren, and B. Khailany,
“2021 ICCAD CAD contest problem C: GPU accelerated logic rewrit-
ing,” in Proc. ICCAD. IEEE, 2021, pp. 1–6.

[7] T. Liu and E. F. Young, “Rethinking AIG resynthesis in parallel,” in
Proc. DAC. IEEE, 2023, pp. 1–6.

[8] Y. Sun, T. Liu, M. D. Wong, and E. F. Young, “Massively parallel AIG
resubstitution,” in Proc. DAC, 2024, pp. 1–6.

[9] T. Liu, L. Chen, X. Li, M. Yuan, and E. F. Young, “FineMap: A fine-
grained GPU-parallel LUT mapping engine,” in Proc. ASPDAC, 2024,
pp. 392–397.

[10] K. Thorat et al., “GROOT: Graph edge re-growth and partitioning for
the verification of large designs in logic synthesis,” in Proc. ICCAD.
IEEE, 2025, pp. 1–6.

[11] B. Goodarzi, M. Burtscher, and D. Goswami, “Parallel graph partitioning
on a cpu-gpu architecture,” in Proc. IPDPS Workshops, 2016, pp. 58–66.

[12] R. Liang, A. Agnesina, and H. Ren, “MedPart: A multi-level evolu-
tionary differentiable hypergraph partitioner,” in Proc. ISPD, 2024, pp.
3–11.

[13] W. L. Lee, D.-L. Lin, T.-W. Huang, S. Jiang, T.-Y. Ho, Y. Lin, and
B. Yu, “G-kway: Multilevel gpu-accelerated k-way graph partitioner,”
in Proc. DAC. ACM, 2024.

[14] Z. Wu, H. Zhao, H. Liu, W. Wen, and J. Li, “gHyPart: GPU-friendly
end-to-end hypergraph partitioner,” ACM TACO, vol. 22, no. 1, pp. 1–25,
2025.

[15] W. L. Lee, D.-L. Lin, C.-H. Chiu, U. Schlichtmann, and T.-W. Huang,
“HyperG: Multilevel GPU-accelerated k-way hypergraph partitioner,” in
Proc. ASPDAC. ACM, 2025, p. 1031–1040.

[16] W. L. Lee et al., “iG-kway: Incremental k-way graph partitioning on
GPU,” in Proc. DAC. IEEE, 2025, pp. 1–7.

[17] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z.
Pan, “DREAMPlace: Deep learning toolkit-enabled gpu acceleration for
modern vlsi placement,” IEEE TCAD, 2020.

[18] Y. Lin, W. Li, J. Gu, H. Ren, B. Khailany, and D. Z. Pan, “ABCD-
Place: Accelerated batch-based concurrent detailed placement on multi-
threaded cpus and gpus,” IEEE TCAD, 2020.

[19] Z. Guo and Y. Lin, “Differentiable-timing-driven global placement,” in
Proc. DAC. ACM, 2022, p. 1315–1320.

[20] A. Agnesina, P. Rajvanshi, T. Yang, G. Pradipta, A. Jiao, B. Keller,
B. Khailany, and H. Ren, “Autodmp: Automated dreamplace-based
macro placement,” in Proc. ISPD, 2023, pp. 149–157.

[21] L. Liu, B. Fu, S. Lin, J. Liu, E. F. Young, and M. D. Wong, “Xplace:
An extremely fast and extensible placement framework,” IEEE TCAD,
vol. 43, no. 6, pp. 1872–1885, 2023.

[22] L. Liu, B. Fu, S. Lin, J. Liu, E. F. Young, and M. D. Wong, “Xplace:
An extremely fast and extensible placement framework,” IEEE TCAD,
2023.

[23] A. B. Kahng and Z. Wang, “Dg-replace: A dataflow-driven gpu-
accelerated analytical global placement framework for machine learning
accelerators,” IEEE TCAD, 2024.

[24] Y. Du, Z. Guo, Y. Lin, R. Wang, and R. Huang, “Fusion of global place-
ment and gate sizing with differentiable optimization,” in Proc. ICCAD.
ACM, 2024.

[25] B. Fu, L. Liu, M. D. F. Wong, and E. F. Y. Young, “Hybrid modeling
and weighting for timing-driven placement with efficient calibration,” in
Proc. ICCAD, 2024.

[26] Y. Du, Z. Guo, R. Wang, and Y. Lin, “Differentiable physical optimiza-
tion,” in Proc. ICCAD. IEEE, 2025, pp. 1–6.

[27] C.-H. Lu, W.-H. Liu, H. Ren, and T.-C. Wang, “Leveraging GPU for
better detailed placement quality,” in Proc. ICCAD. IEEE, 2025, pp.
1–6.

[28] S. Lin, J. Liu, E. F. Young, and M. D. Wong, “GAMER: GPU-
accelerated maze routing,” IEEE TCAD, vol. 42, no. 2, pp. 583–593,
2022.

[29] Z. Guo, F. Gu, and Y. Lin, “GPU-accelerated rectilinear steiner tree
generation,” in Proc. ICCAD. ACM, 2022.

[30] S. Liu et al., “FastGR: Global routing on CPU–GPU with heterogeneous
task graph scheduler,” IEEE TCAD, vol. 42, no. 7, pp. 2317–2330, 2022.

[31] S. Lin, L. Xiao, J. Liu, and E. F. Young, “InstantGR: Scalable GPU
parallelization for global routing,” in Proc. ICCAD, 2024, pp. 1–8.

[32] L. Xiao, S. Lin, J. Liu, Q. Duan, T.-Y. Ho, and E. F. Young, “InstantGR:
Scalable GPU parallelization for 3-d global routing,” IEEE TCAD, 2025.

[33] W. Li, R. Liang, A. Agnesina, H. Yang, C.-T. Ho, A. Rajaram, and
H. Ren, “DGR: Differentiable global router,” in Proc. DAC, 2024, pp.
1–6.

[34] C. Zhao, Z. Guo, R. Wang, Z. Wen, Y. Liang, and Y. Lin, “HeLEM-
GR: Heterogeneous global routing with linearized exponential multiplier
method,” in Proc. ICCAD, 2024, pp. 1–9.

[35] R. Liang, A. Agnesina, W.-H. Liu, M. Liberty, H.-T. Chang, and H. Ren,
“ISPD 2025 performance-driven large scale global routing contest,” in
Proc. ISPD, 2025, pp. 252–256.

[36] C. Zhao, J. Wang, X. Jiang, J. Lou, and Y. Lin, “GTA: GPU-accelerated
track assignment with lightweight lookup table for conflict detection,”
in Proc. ICCAD, 2025, pp. 1–9.

[37] Z. He, Y. Ma, and B. Yu, “X-Check: GPU-accelerated design rule
checking via parallel sweepline algorithms,” in Proc. ICCAD, 2022, pp.
1–9.

[38] Z. He, Y. Zuo, J. Jiang, H. Zheng, Y. Ma, and B. Yu, “OpenDRC: An
efficient open-source design rule checking engine with hierarchical GPU
acceleration,” in Proc. DAC. IEEE, 2023, pp. 1–6.

[39] Z. Guo, T.-W. Huang, and Y. Lin, “GPU-accelerated static timing
analysis,” in Proc. ICCAD. ACM, 2020.

[40] Z. Guo, T.-W. Huang, Z. Jin, C. Zhuo, Y. Lin, R. Wang, and R. Huang,
“Heterogeneous static timing analysis with advanced delay calculator,”
in Proc. DATE, 2024.

[41] S. Lin, G. Guo, T.-W. Huang, W. Sheng, E. Young, and M. Wong,
“GCS-timer: GPU-accelerated current source model based static timing
analysis,” in Proc. DAC. ACM, 2024.

[42] Z. Guo, T.-W. Huang, and Y. Lin, “Accelerating static timing analysis
using CPU-GPU heterogeneous parallelism,” IEEE TCAD, pp. 1–1,
2023.

[43] Y.-C. Lu, Z. Guo, K. Kunal, R. Liang, and H. Ren, “INSTA: An ultra-
fast, differentiable, statistical static timing analysis engine for industrial
physical design applications,” in Proc. DAC. IEEE, 2025.

[44] H. Liu, Z. Guo, R. Wang, and Y. Lin, “IncreGPUSTA: GPU-accelerated
incremental static timing analysis for iterative design flows,” in Proc. IC-
CAD. IEEE, 2025, pp. 1–6.

[45] Z. Guo et al., “HeteroExcept: A CPU-GPU heterogeneous algorithm
to accelerate exception-aware static timing analysis,” in Proc. ICCAD.
ACM, 2024.

[46] Z. Guo, T.-W. Huang, and Y. Lin, “HeteroCPPR: Accelerating common
path pessimism removal with heterogeneous CPU-GPU parallelism,” in
Proc. ICCAD. ACM/IEEE, 2021.

[47] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “GPU-accelerated path-
based timing analysis,” in Proc. DAC. ACM, 2021.

[48] G. Guo, T.-W. Huang, Y. Lin, Z. Guo, S. Yellapragada, and M. D. Wong,
“A GPU-accelerated framework for path-based timing analysis,” IEEE
TCAD, 2023.

[49] C. Chang et al., “PathGen: An efficient parallel critical path generation
algorithm,” in Proc. ASPDAC. IEEE, 2025.

[50] T. Huang, G. Guo, C. Lin, and M. D. F. Wong, “OpenTimer v2: A New
Parallel Incremental Timing Analysis Engine,” IEEE TCAD, vol. 40,
no. 4, pp. 776–786, 2021.

[51] “OpenSTA,” https://github.com/The-OpenROAD-Project/OpenSTA.
[52] P. Liao, D. Guo, Z. Guo, S. Liu, Y. Lin, and B. Yu, “DREAMPlace

4.0: Timing-driven placement with momentum-based net weighting and
lagrangian-based refinement,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 42, no. 10, pp. 3374–
3387, 2023.

[53] Y. Shi, S. Xu, S. Kai, X. Lin, K. Xue, M. Yuan, and C. Qian, “Timing-
driven global placement by efficient critical path extraction,” in 2025
Design, Automation & Test in Europe Conference (DATE). IEEE, 2025,
pp. 1–7.

[54] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer
Designs: A Practical Approach, 1st ed. Springer Publishing Company,
Incorporated, 2009.

[55] “Synopsys PrimeTime,” https://www.synopsys.com/
implementation-and-signoff/signoff/primetime.html.

[56] “Cadence Tempus,” https://www.cadence.com/en US/
home/tools/digital-design-and-signoff/silicon-signoff/
tempus-timing-signoff-solution.html.

[57] J. Hu, G. Schaeffer, and V. Garg, “TAU 2015 contest on incremental
timing analysis,” in Proc. ICCAD. IEEE, 2015, pp. 882–889.

[58] M. Kim, J. Hu, J. Li, and N. Viswanathan, “ICCAD-2015 CAD
contest in incremental timing-driven placement and benchmark suite,”
in Proc. ICCAD, 2015, pp. 921–926.

[59] R. Liang, A. Agnesina, W.-H. Liu, M. Liberty, H.-T. Chang, and
H. Ren, “Invited: ISPD 2025 performance-driven large scale global
routing contest,” in Proc. ISPD. New York, NY, USA: ACM, 2025.

