
HeteroExcept: A CPU-GPU Heterogeneous Algorithm to Accelerate
Exception-aware Static Timing Analysis

Zizheng Guo
1,2
, Zuodong Zhang

1,2
, Wuxi Li

5
, Tsung-Wei Huang

6
, Xizhe Shi

1
, Yufan Du

1,3
,

Yibo Lin
1,2,4∗

, Runsheng Wang
1,2,4

, Ru Huang
1,2,4

1
School of Integrated Circuits, Peking University

2
Institute of EDA, Peking University

3
School of EECS, Peking University

4
Beijing Advanced Innovation Center for Integrated Circuits

5
AMD, Inc.

6
The University of Wisconsin at Madison

ABSTRACT
Static timing analysis (STA) for large-scale modern circuits requires

extensive handling of false paths, multi-cycle paths, and other types

of path exceptions. Despite the linear nature of timing propagation,

we show that exception-aware STA is NP-hard and thus requires a

long runtime to solve using conventional CPU-based methods. To

overcome this runtime challenge, we propose a general CPU-GPU

heterogeneous algorithm, HeteroExcept, that can handle common

types of path exceptions and efficiently generate an accurate path

report. Our algorithm targets runtime efficiency at the scale of thou-

sands of exception rules and millions of circuit elements. To further

improve the performance, we optimize our GPU implementation by

introducing a cost-effective data exchange strategy between CPU

and GPU. Experimental results demonstrate up to 6.84× and 12.93×
speed-up compared to industrial timers, PrimeTime and OpenSTA.

1 INTRODUCTION
Static timing analysis (STA) is a critical component of the design flow

as it verifies circuit functionality under the given clock frequency

and timing constraints. A typical STA algorithm evaluates the circuit

timing by propagating worst-case timing values (e.g., minimum

slew, maximum delay, latest arrival time) from inputs through the

circuit network to outputs. However, this approach can introduce

errors because it does not consider the timing exceptions under

real operating conditions. Examples of errors include false-positive

critical paths that are logically impossible [1], multi-cycle or cross-

domain paths that are not properly constrained [2], etc. These errors

can prevent designers from obtaining real timing results, leading

to wasted efforts in optimizing paths that are actually functioning

correctly.

To address this issue, commercial STA engines incorporate a set

of rules called timing exceptions, which can be specified by designers

or optimization algorithms. Each timing exception acts on the paths

that match a certain subgraph pattern by either stopping the timing

check completely or applying special checking rules. As a result,

exceptions enable us to address the limitations of STA, particularly in

*Corresponding author: Yibo Lin (yibolin@pku.edu.cn). This work is supported in part

by the National Science Foundation of China (Grant No. T2293700, T2293701), Natural

Science Foundation of Beijing, China (Grant No. Z230002), NSF of the US grants 2235276,

2349144, 2349143, 2349582, 2349141, and the 111 Project (B18001).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICCAD ’24, October 27–31, 2024, New York, NY, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1077-3/24/10. . . $15.00

https://doi.org/10.1145/3676536.3676651

Delay
Calculation

Timing
Exception

Solving

Exception-Aware
Forward/Backward

Arrival Time Propagation
(Graph-based Analysis)

Exception-Aware
Path Reporting

(Path-based Analysis)

Physics
Library

Exception
Rules

Delay
annotation

Exception-aware
circuit tag graph

set false path,
set multicycle path…
Defined in .SDC file

This Work
(underlined)

Traditional STA Flow:
Graph-based & Path-based analysis

Figure 1: An exception-aware STA flow.

subgraphs where critical paths may be disregarded to accommodate

the circuit functionality under real operating conditions. Exception-

aware STA has become integral in high-performance circuit designs.

Existing exception-aware STA engines typically solve the excep-

tions before updating the timing on the circuit graph, as shown

in Figure 1. An exception-aware circuit graph can usually be 10×
larger [3] than the original circuit graph because pins must be split

into tags to accommodate different rule-matching states. Creating

this enlarged circuit graph as well as propagating exception-aware

timing values through this graph is thus very time-consuming. For

example, enabling timing exceptions with thousands of rules in

OpenSTA [4] can slow down the runtime by 3×.
The efficiency of STA is critical for fast design closure since STA

is used in the loop of many optimization stages, including logic

synthesis, placement, routing, etc. To speed up STA, CPU-GPU het-

erogeneous algorithms have been proposed to accelerate various

time-consuming STA tasks, such as delay calculation [5, 6], timing

updates [7–12], path reports [13–16], and so on. Despite significant

runtime improvement through CPU-GPU heterogeneous parallelism,

these works are all exception-oblivious. Without the ability to handle

timing exceptions, the practical use of these works is highly limited.

Nevertheless, GPU acceleration of graph algorithms like STA is

known to be challenging because graph computing is highly irregu-

lar [2, 17–20]. Considering exceptions will make the problem even

more challenging because it significantly complicates the STA graph

(Challenge 1). As we shall present later in this paper, we formally

prove that exception-aware STA is NP-hard in the worst case. Al-

though practical exception-aware STA can be handled with pruning

techniques, a comprehensive framework for handling various ex-

ception types is lacking (Challenge 2). Finally, to make the most

https://doi.org/10.1145/3676536.3676651

of GPU acceleration, we need novel CPU-GPU heterogeneous data

structures and kernel algorithms that can efficiently represent and

solve exception states in a general setting (Challenge 3).

As a consequence, we presentHeteroExcept, a CPU-GPU het-

erogeneous algorithm to accelerate exception-aware STA. We sum-

marize our three key contributions as follows:

(1) We propose various novel pruning techniques for exception-

aware STA targeting GPU runtime efficiency, including ex-

ception footprinting, aggressive storage reuse, and memory-

hierarchy-aware algorithms (for Challenge 1).

(2) We present the first GPU-accelerated STA engine supporting

the most common types of timing exceptions, including false

paths, multi-cycle paths with multiple clock domains, path

delay margins, and explicit delay overrides (for Challenge 2).

With our proposed micro-exception framework, we achieve

the best-in-class exception compatibility without complicat-

ing the design of the STA engine.

(3) We propose explicit improvements to CPU-GPU data ex-

change strategies for heterogeneous graph algorithms which

we believe can be applied to a wide range of tasks (for Chal-

lenge 3).

We achieve significant speed-up over industrial standard timers.

For full timing, HeteroExcept is up to 6.84× and 12.93× faster than

PrimeTime and OpenSTA, respectively. Our runtime for incremental
timing updates is even less than 0.2s for large designs with millions

of gates and thousands of exceptions. We believe HeteroExcept will

help designers and the EDA community greatly by providing an

efficient and highly compatible STA toolset for modern designs.

The rest of this paper is organized as follows. Section 2 introduces

the background of exception-aware STA. Section 3 formally shows

that exception-aware STA is NP-hard. Section 4 presents our Het-

eroExcept engine. Section 5 demonstrates the experimental results.

Finally, Section 6 concludes the paper.

2 PRELIMINARIES
STA engine analyzes the signal delay and reports the most timing-

critical signal paths inside the circuit. This information is then used

by designers and VLSI CAD algorithms to optimize circuit perfor-

mance and fix circuit race conditions during the entire design flow.

During the STA process, the circuit is modeled as a directed acyclic

graph (DAG) (𝑉 , 𝐸), in which nodes 𝑣 ∈ 𝑉 represent circuit pins

and edges 𝑒 ∈ 𝐸 represent timing arcs of logic cells and wires [21].

Each timing arc on the DAG is annotated with a floating point delay

value calculated by physics-aware delay models like Elmore, NLDM,

and CCS before performing path extraction. This work assumes de-

lay values as inputs and focuses on the exception-solving and path

extraction steps which are key to the efficiency of the overall STA

flow.

During path extraction, timing constraints are calculated and

compared with the worst-case path delays to get path slacks. A path

is a sequence of connected pins on the DAG from a timing startpoint

(primary inputs, PI, or outputs of sequential elements) to a timing

endpoint (primary outputs, PO, or inputs of sequential elements).

Setup and hold constraints give the upper and lower bounds of path

delays respectively conditioned on the clock domain involved. A

number 𝑘 is given by the designer and the STA engine searches

for the top-𝑘 critical timing paths for setup and hold constraints

separately.

Modern circuits exploit a variety of clocking and pipelining tech-

niques during logic design. Due to logic properties and nontrivial

sel

in0

in1 sel

in0

in1

MUX0 MUX1

logic logically
impossible!

(a) set_false_path -through MUX0/in0 -through MUX1/in1

D

CK

Q D

CK

Qslow
logic

EN
FF0 FF1

CLK

FF0/CK

FF1/CK

default setup relation

multi-cycle setup relation

(b) set_multicycle_path -setup 2 -from FF0 -to FF1

CLK

/2 clock
divider

/3 clock
divider

D

CK

Q

D

CK

Q

logic

synchronous clock
setup relation

(c) create_generated_clock -divide_by 2 [get_pins DIV2/out]
 create_generated_clock -divide_by 3 [get_pins DIV3/out]

DIV2/out

DIV3/out

logic

NOR1/a

AND2/o

path delay +10ps

logic

NOR3/a

AND4/o

Assert: segment delay ≤ 200ps

{

}

(d) set_path_margin 10 -through
NOR1/a -through AND2/o

(e) set_max_delay 200
-from NOR3/a -to AND4/o

Figure 2: Different types of common timing exceptions.

path clocking, paths satisfying certain patterns in these circuits re-

quire special treatment in constraints calculation. Designers specify

these patterns as timing exceptions in a Synopsys Design Constraints

(.SDC, a Tcl dialect) file and feed it to signoff STA engines like Prime-

Time and OpenSTA in order to obtain real timing-critical paths of

such circuits. As shown in Figure 2, the most common types of timing

exceptions are:

(a) False paths: paths satisfying given patterns are completely

eliminated from timing reports because they are logically

impossible to achieve.

(b) Multi-cycle paths: paths satisfying given patterns are

marked as expanding multiple clock cycles during signal prop-

agation. Their timing constraints are redefined accordingly.

(c) Synchronous clock domains and generated clocks: a de-
sign can have multiple synchronous clock domains with dif-

ferent waveforms, either explicitly defined or generated from

clock frequency changers. The timing paths across different

clock domains have special setup and hold relations.

(d) Path margins: a delay offset is applied to paths matching

given patterns.

(e) Delay overrides: explicit delay assertions can be applied

between arbitrary pairs of pins in the netlist, creating new

timing startpoints and endpoints.

Table 1: Overview of exception support in different academic
and commercial STA engines.

STA (a) false (b) multi- (c) clock (d) path (e) delay

GPU
engine path cycle path domain margin override

OpenTimer [29]

False paths
∗ ✓

[2, 28] ✓ ✓
[30] ✓ ✓ ✓ ✓

GPU Timers
† ✓

OpenSTA [4] ✓ ✓ ✓ ✓
PrimeTime [31] ✓ ✓ ✓ ✓ ✓

This work ✓ ✓ ✓ ✓ ✓ ✓

∗
: False path only works include: [1, 17–20, 22–27].

†
: GPU timer works include: [5–8, 13–16]. None of them supports any

timing exceptions. [15] reports paths inside a subgraph, which is different
from false path exceptions that globally disable a set of subgraphs (which
turns out to be much harder, see Section 3).

Other types of timing exceptions like set_disable_timing,
set_case_analysis, and set_clock_groups can be re-

garded as special cases of set_false_path. Signoff STA engines

like PrimeTime and OpenSTA provide abundant support to various

types of timing exceptions. Prior academic works [1, 2, 17–20, 22–

28], on the other hand, mainly focused on false paths and multi-cycle

paths only. Table 1 lists an overall comparison of exception support

in previous STA engines.

3 NP-HARDNESS PROOF OF EXCEPTION
It has been known that the identification of all false paths in a circuit

is NP-hard, due to its obvious equivalence to boolean satisfiability

(SAT) and formal verification. To circumvent this, designers have

been using knowledge of the frontend circuit design or automatic

test pattern generation (ATPG) techniques to manually specify a set

of subgraphs as false path exceptions to STA engines.

However, even with this given set of false path patterns as prior

knowledge, STA engines still struggle to check circuit timing. Re-

search on exception-aware STA has targeted pruning techniques

like exhaustive path searching and tag-based algorithms that heuris-

tically reduce the STA runtime, but none of these techniques have

strong algorithm complexity guarantees. A very close attempt for

provable complexity is made by Blaauw et al [24] who gave a poly-

nomial time algorithm for special 2-stage false paths (e.g., without

-through options), but their algorithm does not work for general

false path patterns.

As a result, it has been wondered whether there exists a polyno-

mial runtime STAmethod that can handle general exception patterns

heavily used by designers nowadays [17, 30]. Contrary to the false

path identification problem, STA with predefined simple path pat-

terns to avoid seems much easier to handle as it is a pure graph

problem and unrelated to circuit logic. Counter-intuitively and un-

fortunately, here we give a formal negative answer to the complexity

conjecture for the first time in literature, by proving that STA with

predefined timing exceptions is NP-hard, even only considering false

path exceptions. This implies that no polynomial algorithm can exist

for exception-aware STA unless P=NP.

Specifically, we have proved the following theorem:

Theorem1. Any 3-SAT problem instance can be polynomially reduced
to an equivalent static timing analysis problem instance with a set of
3-stage false path patterns.

Start End…

…

x1 x2 x3 xn

x1 x2 x3 xn

xi

xi

xj

xj

xk

xk

… …xi + xj + xk

false path

variables

clauses

Figure 3: Illustration of our 3-SAT reduction: DAG represents
variables and false path exceptions represent CNF clauses.

3-SAT is among the first combinatorial problems proved to be

NP-hard [32]. It asks for the satisfiability of a boolean formula in

conjunctive normal form (CNF) where every clause has at most 3

literals.

For any 3-SAT problem instance with 𝑛 variables and𝑚 clauses,

we create a timing DAG with 2𝑛 + 2 nodes and 4𝑛 edges:

𝑉 = {Start, End, 𝑥1, 𝑥2, ..., 𝑥𝑛, 𝑥1, 𝑥2, ..., 𝑥𝑛}, (1)

𝐸 = {Start→ 𝑥1, Start→ 𝑥1, 𝑥𝑛 → End, 𝑥𝑛 → End}∪
{𝑥𝑖−1 → 𝑥𝑖 , 𝑥𝑖−1 → 𝑥𝑖 , 𝑥𝑖−1 → 𝑥𝑖 , 𝑥𝑖−1 → 𝑥𝑖 | 𝑖 = 2, 3, ..., 𝑛}. (2)

The edge delays are all set to 1. We then transform the𝑚 clauses to𝑚

false path exceptions on this graph. The false path pattern matches

the nodes corresponding to the negation of literals in the clause. For

example, for a clause (𝑥𝑖 + 𝑥 𝑗 + 𝑥𝑘) with 𝑖 < 𝑗 < 𝑘 , it is equivalent

to 𝑥𝑖 · 𝑥 𝑗 · 𝑥𝑘 by de Morgan’s law. We add the following false path

exception:

set_false_path −through 𝑥𝑖 −through 𝑥 𝑗 −through 𝑥𝑘 . (3)

These constructions are visualized in Figure 3. For completeness of

timing definition, we add a dummy clock, set the arrival time of node

Start to 0, and the required arrival time of node End to 0 relative to

this clock.

create_clock −name dummy

set_input_delay −max 0 Start −clock dummy

set_output_delay −max 0 End −clock dummy

(4)

With the above construction, a 3-SAT problem is reduced to an

exception-aware STA problem. We have the following lemma,

Lemma 1. Every valid timing path in the constructed timing graph
corresponds to a variable assignment that satisfies all 3-SAT clauses.

Proof. By the initial conditions in Equation (4), every constrained

timing path connects node Start and End. The graph constructed by

Equation (2) has a layered structure, forcing every path to go through

exactly one node in {𝑥1, 𝑥1}, then exactly one node in {𝑥2, 𝑥2} and
so forth. There are 2

𝑛
possible paths matching every assignment of

the 𝑛 boolean variables.

Among these assignments, the valid ones should satisfy all 𝑚

clauses. For example, to satisfy one clause (𝑥𝑖 + 𝑥 𝑗 + 𝑥𝑘), at least one
of 𝑥𝑖 , 𝑥 𝑗 , and 𝑥𝑘 should be true. This is equivalent to ensuring 𝑥𝑖 , 𝑥 𝑗 ,

and 𝑥𝑘 are not simultaneously adopted. This constraint is exactly

modeled by the false path exception in Equation (3). □

Input Graph Preparation

Read Netlist,
Liberty, etc.

Graph-based
STA

Topology
Levelization

Deduct Clock
Waveform

Path Object
Reference

Exception Footprinting

Forward
Reachability

Backward
Reachability

Termination
Point

Generation

Repeated for each exception

Tag Graph Construction

Clock &
Primary

I/O Grouping

Forward
Tag

Propagation

Hash &
Cache-based

Pruning

For each level, with speculative memory allocation

Endpoint
Generation

Top-k Path Search

Arrival Time
Propagation

Deviation
Edge

Searching

Slack Sorting
& Pruning

Repeated until converged to top-k

Path Report

GPU
Kernel

CPU
Kernel

Legends

Figure 4: Our HeteroExcept algorithm flow.

The proof of Theorem 1 is straightforward given Lemma 1. By

asking for the top-1 path, a valid critical path is reported if and only if

the 3-SAT problem is satisfiable. The NP-hardness conclusion follows

this reduction [33] as if there exists a polynomial timing exception

solver, it can then be used to solve any 3-SAT problem in polynomial

time. A similar NP-completeness conclusion can be easily derived for

a decision version of exception-aware STA that only asks whether

a critical path exists or not. Due to page limit, we skip the claim

and proof for NP-completeness. We note that this reduction method

also rules out the possibility of many approximation algorithms for

exception-aware STA.

4 THE HETEROEXCEPT ALGORITHMS
Although NP-hardness is a negative conclusion to the complexity

question, we emphasize that better pruning techniques and hetero-

geneous parallelism are still feasible that can solve practical timing

exceptions a lot more efficiently.

In this work, we propose HeteroExcept, an efficient heterogeneous

exception engine for STA. We build our flow on top of prior works

on GPU-accelerated STA including levelization and graph-based

STA algorithms in [7, 8] and path search algorithms in [13, 14, 16].

Our algorithm flow (Figure 4) consists of 4 major steps: input graph

preparation, exception footprinting, tag graph construction, and top-

𝑘 path search. We use a combination of CPU and GPU computation

tasks (see legends in Figure 4) to accelerate exception handling on a

heterogeneous platform, providing unprecedented runtime speed-

up. To achieve this, we employ a series of novel data structures and

CPU-GPU interaction strategies.

4.1 Micro-Exception Framework to Handle
General Exceptions

We introduce support to all 5 exception types mentioned in Sec-

tion 2 in a unified framework. This makes HeteroExcept by far the

most general exception engine in academic literature. HeteroExcept

achieves this by extending the tag-based exception solver widely

used in prior works.

A tag maintains the matching states of exception patterns to

distinguish paths that fall under different exceptions, as illustrated

in Figure 5. Each tag contains a set of partly-matched exception

patterns called the rule set. A pin can have multiple tags each with

its own signal arrival time (e.g., node 3 in Figure 5). During signal

propagation, the rule sets in tags are also updated (e.g., from node 3

to nodes 4 and 5 in Figure 5).

1

2
3

4

5

15ps

10ps

e1: set_multicycle_path -through 1 -through 4

{e1:0}: 0ps

stage 0 stage 1

{}: 0ps

{e1:0}: 15ps
{}: 10ps 2ps

3ps

{e1:1}: 10+2=12ps
{}: 15+2=17ps

{}: max(10+3,15+3)=18ps

1/{e1:0}

2/{}

3/{e1:0}
3/{}

4/{e1:1}
4/{}

5/{}
Figure 5: Example of tag-based exception handling, with a
2-stage exception pattern.

Upon a successful match, an exception modifies the timing check

behavior of the path. With multiple exceptions matched, STA engine

shall consider their interactions. For example,

• When there are multiple matching exceptions of one same

type, the one with the highest priority should be adopted. A

higher priority is assigned to exceptions with more specific

path patterns.

• Different types of exceptions should be adopted simultane-

ously. For example, a path can cross different clock domains,

be a multi-cycle path, and be affected by a slack margin all at

the same time.

• Delay overrides (set min/max delay) might create new timing

startpoints and endpoints if pins are specified in -from and

-to options, respectively. Paths from these new startpoints

have special arrival times starting from zero and are detached

from the fanin pins. These paths no longer recognize multi-

cycle exceptions, but can still be affected by false paths or

path margins.

Correctly modeling these exception interactions is challenging

and can easily complicate the implementation and acceleration of

an exception engine. To address this complexity, we add one in-

termediate representation (IR) below the exception types which

we call micro-exceptions. Micro-exceptions are to designer-visible

timing exceptions as CPU microcodes are to programmer-visible

CPU instructions. In HeteroExcept, we have the following 5 types

of micro-exceptions:

(1) KILL_AT_COMPLETE: removes the whole tag when the ex-

ception pattern is matched.

(2) KILL_AT_COMPLETE_IF_NOT_OWN_START: removes

the whole tag when the exception pattern is matched, if the

tag is not from special tag generated by START_OWN.
(3) NO_PROP_AFTER_COMPLETE: marks the tag as final and

prevents its propagation to fanout pins when the exception

pattern is matched.

(4) START_OWN: when the exception pattern starts to match,

creates a special tag at the start pin with zero arrival time.

(5) CLEANUP_PRIORITY(type, priority): when the exception

pattern is matched, the rules with the same type but lower

priority are pruned from the tag rule set.

Each exception is compiled into a set of micro-exceptions by

Algorithm 1 that collectively implement its complex behavior.

Algorithm 1: Exception translation.

1 micro_exceptions← {};
2 if exception is a false path then
3 Add KILL_AT_COMPLETE into micro_exceptions;
4 if exception is a delay override then
5 if exception has -from pin then
6 Add START_OWN into micro_exceptions;
7 if exception has -to pin then
8 Add NO_PROP_AFTER_COMPLETE into

micro_exceptions;
9 if exception has both -from pin and -to pin then
10 Add

KILL_AT_COMPLETE_IF_NOT_OWN_START
into micro_exceptions;

11 if exception is a multi-cycle path, path margin, or delay
override then

12 Add CLEANUP_PRIORITY into micro_exceptions;

By executing the micro-exceptions, each tag at timing endpoints

contains a rule set with clean matched exceptions readily to be

considered for calculating required arrival time and slacks. Micro-

exceptions help us control the complexity of our exception solver

by making it general and flexible.

4.2 Exception Footprinting
With 𝑛 exceptions, it is easy to see that the maximum number of

distinct tag rule sets can exceed 2
𝑛
. In addition to modeling the

interactions between exceptions, it is thus also essential to prevent

unnecessary interactions by strictly limiting the range of effect for

every exception with best practical effort. To this end, we present a

novel preprocessing step called exception footprinting (the second

step block in Figure 4) before constructing the tag graph. Excep-

tion footprinting provides a succinct representation of the affected

regions for every exception pattern, which in turn greatly saves

runtime during tag-based exception solving.

The basic idea of exception footprinting is to compute a set of

region boundary pins, which we call an earliest termination point

set. A termination point is defined as a pin that can be reached from

the exception subgraph, but cannot reach the pins at next stages (see

Figure 6). Once a tag reaches a termination point, the corresponding

rule (if exists) will be pruned from the rule set of that tag because it

will no longer be matched successfully.

To find the termination points, we perform a forward propagation

and a backward propagation on the circuit topology. During both

propagations, we compute the reachability of every node to all stages

1

2

3

5

4
7

8

9

{exception type} -from 1 -through {4, 5} -to 8

6

10
11

earliest termination point set: {2, 6, 9}

can be reached from 1,
but cannot reach 4 or 5

can be reached from 4,
but cannot reach 8

F: 111
B: 100

F: 000
B: 100

F: 011
B: 100

F: 011
B: 110

stage 0 stage 1 stage 2 …

F: 011
B: 110

F: 001
B: 110

F: 001
B: 111

F: 000
B: 110

F: 000
B: 110

Figure 6: An example of exception footprinting, illustrating
the stages (in colors), earliest termination points (in gray), and
the forward/backward reachability vectors (marked with F:
and B:).

in the exception pattern. We obtain 2 bit vectors called forward

and backward reachability vectors for every node. By OR-ing the

2 vectors and checking if the result vector contains 0, we can then

determine whether the node is a termination point and obtain the

earliest termination points.

4.3 Technical Highlights on Tag Pruning
To further reduce the runtime cost for the expensive tag propagation,

we develop a multi-layer approach for tag pruning, as shown in

Figure 7. These pruning techniques deliberately target a few frequent

exception patterns in large multi-clock-domain circuit designs and

turn them into optimization opportunities.

for every pin rise/fall:
tag_start[],
tag_count[]

pin_tag_indices[]

struct Tag {…} []

rule state and
clock domain
set storage

(2)

(3)

tag_start[0] = 0
tag_count[0] = 4

tag_start[1] = 4
tag_count[1] = 2

(2) Reuse whole tag
when unchanged
(copy-on-write &
hash deduplicate)

(3) Reuse tag fields
when possible

(copy-on-write)

struct Tag { hash; clock domain set; rule state set; }

(1) (1) Use one tag for multiple
clock domains, if they

have same initial arrivals

Figure 7:Multiple stage design of tag database and our pruning
techniques.

Our first observation is that multiple clocks can be defined on the

same source pins with different frequencies by providing-addwhen

creating the clock. This is often used in video decode designs. The

arrival times for these different clock domains are the same regardless

of the delay propagation. As a result, a single tag is sufficient to

represent all of them. To this end, we add a clock domain set field

alongside the rule set field in the tag structure (see (1) in Figure 7).

A tag representing multiple clock domains will be split later when

needed, e.g., when an exception matches only a part of the clock

domains in the tag.

We further observe that only a very small fraction (less than 1%)

of pins will modify the tag. Most of the pins instead just pass on

the tags from their fan-ins. In HeteroExcept, we thus reuse tags and

tag fields whenever possible. This technique is called copy-on-write

which is often used in functional programming. We use pointers and

indices to reference the whole tags and the tag fields (see (2) and (3)

in Figure 7 respectively). We postpone the creation of new tag or

allocation of tag field memory until there is a change.

In tag propagation, we always ensure there are no duplicate tags

on every pin when merging the fan-in tags. Due to the multi-layer

tag structure, the detection of tag duplication involves dozens of

costly indirect memory references. We accelerate the duplication

detection by hashing the tags. We need a strong collision-resistant

hash function for tags that is agnostic to the order of elements in

orderless sets like clock domains and rule states.

At the core of our hashing function (Algorithm 2) is the integer

bit mixing [34] primitive (hash_u64). This integer hashing makes

use of efficient bitwise operations modulo 2
64
. The magic constants

inside it are random odd numbers ensuring that the hashing is 1-1

invertible. The tag hasher (hash_tag) sums the mixed bits of all

clocks and rules, with a last-bit distinction between the two.

Algorithm 2: Tag hashing.

1 Function hash_u64(x) ⊲ bit mixing primitive [34]:
2 𝑥 ← 𝑥 ⊕ 0x1cb8b9d87bc84a7;

3 𝑥 ← (𝑥 ⊕ (𝑥 ≫ 30)) × 0xbf58476d1ce4e5b9;
4 𝑥 ← (𝑥 ⊕ (𝑥 ≫ 27)) × 0x94d049bb133111eb;
5 𝑥 ← 𝑥 ⊕ (𝑥 ≫ 31);
6 return x;

7 Function hash_tag(tag):
8 ℎ ← 0x1;

9 for clock ∈ tag.clocks do
10 ℎ ← ℎ + hash_u64(clock ≪ 1);

11 for rule ∈ tag.rules do
12 ℎ ← ℎ + hash_u64(rule ≪ 1 | 1);
13 return hash_u64(ℎ);

By fully exploiting the memory hierarchy of heterogeneous de-

vices, we can even further boost the tag propagation efficiency. Both

CPUs and GPUs have small and ultrafast cache near their computa-

tion units (L1 cache and thread-local memory respectively). In kernel

implementation, we store the hashes of the first few tags inside a

software cache array that fits in these ultrafast caches. We observe

that the number of tags is less than 6 for most (75%+) pins even on

our largest designs. Our tag propagation kernel on these pins will

work completely inside caches and thus eliminate nearly all global

memory accesses.

4.4 Efficient CPU-GPU Storage Management
Dynamic memory management is one major difficulty in porting

graph algorithms to GPU. Graph algorithms often need to allocate

small pieces of memory on every node for temporary or result stor-

age purposes. A parallel graph algorithm thus needs to parallelize

the per-node memory allocation. A good way to avoid thread race

conditions for memory allocation is to pre-allocate a memory pool

and distribute the memory pieces according to the memory demand

Algorithm 3: Local cache-based deduplication in kernels.

1 NUM_CACHE_LINE← 6;

2 cache← [empty × NUM_CACHE_LINE];
3 for every new tag propagated do
4 Search for same hash in cache lines;

5 if not found in cache but the cache is full then
6 Search again for the same hash in stored tag memory,

by comparing it with all current tags;

7 if same hash found wherever then
8 Remap the new edges pointing to the existing tag;

9 Continue to process next tag;

10 Add new tag and edges to memory;

11 if there is empty line in cache then
12 Add tag hash into cache;

of threads. However, the demand for threads is usually highly imbal-

anced and hard to predict as it is determined by algorithm context.

To solve the problem, a “compute-twice” approach is widely

adopted in previous works [13, 14, 16, 35]. The first round of com-

putation only figures out the memory demand without writing out

the results. After calculating the demand, a parallel prefix sum is

performed to obtain the total amount of memory to allocate, as

well as the memory offsets for all threads. Finally, the memory is

allocated and a second round of computation is performed which

writes out the result to the memory. While this method is precise in

memory allocation, it forces one to perform the same computation

twice which is wasteful. For highly sophisticated graph algorithms

like tag propagation, it may even need multiple rounds to calculate

the memory demand which leads to unacceptable performance.

HeteroExcept adopts a novel speculative approach for memory

allocation, as shown in Figure 8. Instead of calculating memory de-

mand for tags and nested fields in advance which requires up to 3

rounds of computation, we compute tags and fields in a single round

that may fail or succeed. The memory pool is managed heuristically

like std::vector in C++. The GPU kernel is informed of its size

and maximum capacity. When the memory writes exceed the ca-

pacity during GPU parallel execution, the size is advanced as usual

but actual memory writes are not performed. After one round of

calculation, CPU checks whether the final size exceeds the capacity

to find if there has been an overflow. If an overflow has happened,

CPU expands the memory pool with the precise demand now avail-

able, rolls back the size, and re-runs the GPU kernel. Thanks to the

heuristic expansion, more than 90% of the time the kernel needs to

run optimally once.

5 EXPERIMENTAL RESULTS
We implement our exception-aware STA flow as HeteroExcept, a
heterogeneous exception engine for general timing exception analy-

sis. HeteroExcept is written in high-performance C++, CUDA, and

Rust, exporting user interface as a general STA engine.

To demonstrate the runtime benefit of HeteroExcept over cutting-

edge commercial tools, we compare the runtime of HeteroExcept

with two baselines, PrimeTime (2021.06) and OpenSTA (latest), on

a set of million-sized circuit design originated from TAU timing

analysis contest [36]. We do not compare with previous GPU-based

timers because they do not support exception handling (Table 1).

For each design, we randomly generate up to 4,216 exceptions of

different types, each by randomly selecting a path and then randomly

Conservative:
Determine demand in

multiple rounds

Our work:
Speculative

memory allocation

calculate
tag storage

demand

prefix sum
tag demand

allocate tag
storage

calculate
rule storage

demand

prefix sum
rule demand

allocate rule
storage

calculate
rules

calculate tags
and rules,

do not store if
index exceed

capacity

check for
overflow

expand storage,
additional +50%

calculate tags
and rules

again

if overflowed:
happens < 1 in 10

GPU GPU

time-consuming
GPU taskCPU task

Runtime
Saved!

Legends

Figure 8: Illustration of speculative memory allocation effi-
cien is much more efficient than conservative multi-rounds
memory allocation especially on tag propagation.

choosing 1–3 pins on the path as through points to form an exception

pattern. We pre-generate delay annotations in SDF format for every

design and feed them to the STA engines under test. We switch

off common path pessimism removal (CPPR) in both baselines. All

STA engines start with the same set of circuit graphs and delays

which ensures a fair comparison. Our algorithm does not sacrifice

any accuracy and the reported paths by HeteroExcept achieve full
match on slack values compared to PrimeTime.

We conduct all experiments on an Ubuntu 22.04 Linux host with

64 cores AMD CPU and 1 RTX 3090 GPU. The main memory is

378GB for CPU and the GPU memory is 24GB. Wall-clock runtime

is measured on the report_timing call after reading the design

files. Each data point is the average of 3 runs.

5.1 Full Timing and Incremental Timing
Performance

Table 2 lists benchmark statistics and a detailed runtime comparison.

HeteroExcept outperforms both PrimeTime and OpenSTA on all

benchmarks we have tested, either running on CPU or GPU. The

speed-up ratio on GPU is 2.25×–6.84× over PrimeTime and 2.99×–
12.93× over OpenSTA. The average speed-up is 4.53× and 8.16× on

GPU over PrimeTime and OpenSTA respectively.

Even on the same CPU hardware without GPU, HeteroExcept

algorithm can still outperform PrimeTime and OpenSTA by 2× on
average, thanks to our novel tag data structures and pruning tech-

niques designed to solve exceptions efficiently. HeteroExcept on

GPU achieves significant speed-up over CPU except on one smallest

case aes_core where the total runtime is already negligible.

It is known that STA engines are frequently invocated inside inner

loops of the design process such as timing-driven placement and

routing. In these scenarios, the performance requirement is even

more critical as the timing analysis needs to be repeated thousands

of times along with the design iterations. These scenarios are called

incremental timing update where the delays are updated but path

exceptions remain unchanged. As a result, the construction of tag

graph becomes a one-time cost and the timing update on the fixed

tag graph will instead dominate the flow runtime.

Thus, we also introduce support to incremental timing updates

in HeteroExcept and measure the runtime in Table 3. Before the

incremental update, we perform a full update and feed a new SDF

file with randomly modified delay values. The incremental updates

are drastically faster than full updates. For example, it only takes

HeteroExcept less than 0.2 seconds (200 ms) to update the timing

of a million-sized design with thousands of exceptions. On average,

our GPU-accelerated incremental timing update costs only 2.1%

of a full update runtime, which is over 40× speed-up. Compared

with incremental updates on CPU, the GPU-accelerated incremental

update is 20× faster. As a result, HeteroExcept is very helpful in

timing-driven design optimization applications.

5.2 Runtime Scalability
We further analyze the runtime scalability of HeteroExcept and the

baselines under different numbers of CPU threads (Figure 9) and

paths (Figure 10).

The CPU parallelism of OpenSTA saturates at around 4 threads.

PrimeTime generally runs faster with more threads, up to its maxi-

mum supported 32 threads. Our CPU version of HeteroExcept runs

best under 16 threads where it can outperform PrimeTime with 32

threads. All of them eventually hit a performance wall due to the

fundamental limitation of CPU parallelism. The heterogeneous GPU

version of HeteroExcept successfully overcomes this limitation and

introduces a large speed-up thanks to the power of heterogeneous

parallelism and our efficient algorithms. HeteroExcept on GPU also

benefits from increase in CPU threads because it also contains tasks

on CPU (see Figure 4).

With an increasing number of reported paths up to 𝑘=10K,

HeteroExcept shows a consistent high speed. HeteroExcept also

shows a much smaller increase in runtime for each additional path

searched. This efficiency aligns with previous GPU-accelerated

STA works based on similar parallel prefix-suffix expansion algo-

rithms [13, 14, 16], showing a successful migration of heterogeneous

path searching to exception-aware tag graphs.

5.3 Ablation Study and Runtime Breakdown
We look deeper into the performance of HeteroExcept by conduct-

ing an ablation study for our speculative allocation technique (Sec-

tion 4.4) and a runtime breakdown. Figure 11 shows the total tag

propagation runtime for design netcard split into different steps.

Speculative execution reduces our GPU kernel runtime by 2.4× com-

pared to conservative allocation. The accelerated tag propagation

step is now faster than exception footprinting (25% vs. 46%) in the

runtime breakdown. Endpoint generation also takes 19% of runtime,

in which further speed-up is possible through GPU acceleration in

future work.

6 CONCLUSION
This paper presents HeteroExcept, an ultrafast heterogeneous STA

engine for general exceptions including false paths, multi-cycle paths,

and more. With fine-grained optimization techniques including ex-

ception footprinting, micro-exception translation, tag pruning, and

speculative execution, HeteroExcept achieves up to 6.84× and 12.93×

Table 2: Runtime comparison between PrimeTime, OpenSTA, and HeteroExcept (Ours) on TAU 2015 benchmark.

Benchmark

Circuit Statistics

#Excepts

PrimeTime (16C) OpenSTA (16C) Ours CPU (16C) Ours GPU (16C + 1G)

#Gates #Nets #Pins RT (ms) Ratio RT (ms) Ratio RT (ms) Ratio RT (ms) Ratio

aes_core 22938 23199 66221 66 625.13 3.90 479.69 2.99 119.96 0.75 160.36 1.00

b19_iccad 255278 255300 776320 782 3275.13 5.75 6494.89 11.40 1438.02 2.52 569.67 1.00

des_perf_ispd 138878 139112 371587 373 1904.74 6.66 2322.59 8.12 938.79 3.28 286.10 1.00

edit_dist_ispd 147650 150212 416609 419 2448.76 2.25 7823.66 7.18 2421.99 2.22 1090.23 1.00

fft_ispd 38158 39184 116139 116 894.92 4.71 634.33 3.34 237.90 1.25 189.93 1.00

leon2_iccad 1616369 1616984 4178874 4216 24732.50 4.27 44241.53 7.63 20392.20 3.52 5796.63 1.00

leon3mp_iccad 1247725 1247979 3267993 3297 18856.88 4.80 50775.08 12.93 12200.72 3.11 3925.81 1.00

matrix_mult_ispd 164040 167242 475186 478 2444.96 3.33 6294.99 8.57 2445.20 3.33 734.78 1.00

mgc_edit_dist_iccad 161692 164254 444693 448 2565.11 3.50 5971.82 8.14 1438.15 1.96 733.28 1.00

mgc_matrix_mult_iccad 171282 174484 489670 493 2538.92 3.76 8230.28 12.19 2034.64 3.01 675.32 1.00

netcard_iccad 1496719 1498555 3901343 3936 19872.67 4.84 37811.71 9.21 16566.81 4.03 4106.54 1.00

pci_bridge32_ispd 40790 40950 108172 108 804.50 4.26 1055.49 5.59 319.03 1.69 188.78 1.00

vga_lcd_iccad 259067 259152 662179 667 3514.43 6.84 4526.05 8.81 1633.48 3.18 513.79 1.00

Avg. Ratio - - - 4.53 - 8.16 - 2.60 - 1.00

RT: runtime in milliseconds (10
−3
s). Ratio: runtime ratio compared to HeteroExcept on GPU. #Excepts: number of exceptions in SDC.

All baselines are run with 16 CPU cores and 1 GPU, reporting 𝑘 = 100 paths.

Table 3: Our runtime (ms) for incremental timing update.

Benchmark Full CPU Full GPU Incr. CPU Incr. GPU

aes_core 119.96 160.36 5.24 1.96

b19_iccad 1438.02 569.67 51.32 9.99

des_perf_ispd 938.79 286.10 27.65 4.46

edit_dist_ispd 2421.99 1090.23 176.55 23.12

fft_ispd 237.90 189.93 8.68 2.34

leon2_iccad 20392.20 5796.63 3048.17 182.50

leon3mp_iccad 12200.72 3925.81 1830.59 109.92

matrix_mult_ispd 2445.20 734.78 378.18 18.87

mgc_edit_dist_iccad 1438.15 733.28 121.85 16.53

mgc_matrix_mult_iccad 2034.64 675.32 323.50 17.15

netcard_iccad 16566.81 4106.54 2281.60 93.55

pci_bridge32_ispd 319.03 188.78 9.42 2.73

vga_lcd_iccad 1633.48 513.79 230.37 9.55

Avg. Ratio 2.605 1.000 0.279 0.021

12 4 8 16 24 32

10

100

Number of Threads

R
u
n
t
i
m
e
(
s
)

leon2_iccad

PrimeTime

OpenSTA

Ours CPU

Ours GPU

12 4 8 16 24 32

10

100

Number of Threads

R
u
n
t
i
m
e
(
s
)

netcard_iccad

PrimeTime

OpenSTA

Ours CPU

Ours GPU

Figure 9: Runtime scalability of PrimeTime, OpenSTA, and
HeteroExcept (Ours) under different numbers of CPU cores
on design leon2 and netcard, reporting 𝑘 = 10 paths.

speed-up over industrial standard STA engines. We believe HeteroEx-

cept can benefit a wide range of timing-driven chip design tasks by

providing an ultrafast exception-aware timing engine.

1 10 100 1,000 10,000

10

100

Number of Paths

R
u
n
t
i
m
e
(
s
)

leon2_iccad

PrimeTime

OpenSTA

Ours CPU

Ours GPU

1 10 100 1,000 10,000
3.16

10

31.6

Number of Paths

R
u
n
t
i
m
e
(
s
)

netcard_iccad

PrimeTime

OpenSTA

Ours CPU

Ours GPU

Figure 10: Runtime on different number of paths 𝑘 for Prime-
Time, OpenSTA, and HeteroExcept (Ours) on design leon2
and netcard, all on 16 CPU cores.

0 200 400 600 800 1000 1200

Speculative

Conservative
Prop 1 Prop 2 Prop 3

Prefix
Sum

Prefix
Sum

Prop 1 Rerun

ms

1126 ms

470 ms (2.4× speed-up)

(1)
Levelization

4%

(2)
Exception
Footprint

46%
(3) Tag
prop
25%

(4)
Endpoint

Init
19%

(5)
Timing
prop
2%

(6) Path
search

4%

Figure 11: Ablation study on design netcard for speculative
allocation and the runtime breakdown.

REFERENCES
[1] K. Belkhale and A. Suess, “Timing analysis with known false sub graphs,” in

Proc. ICCAD. San Jose, CA, USA: IEEE Comput. Soc. Press, 1995, pp. 736–739.

[2] Shuo Zhou, Bo Yao, Hongyu Chen, Yi Zhu, Chung-Kuan Cheng, and M. Hutton,

“Efficient static timing analysis using a unified framework for false paths and

multi-cycle paths,” in Proc. ASPDAC. Yokohama, Japan: IEEE, 2006, pp. 73–78.

[3] W. Li, Y. Kukimoto, G. Servel, I. Bustany, and M. E. Dehkordi, “Calibration-based

differentiable timing optimization in non-linear global placement,” in Proc. ISPD.
ACM, 2024, p. 31–39.

[4] “OpenSTA,” https://github.com/The-OpenROAD-Project/OpenSTA.

[5] Z. Guo, T.-W. Huang, Z. Jin, C. Zhuo, Y. Lin, R.Wang, and R. Huang, “Heterogeneous

static timing analysis with advanced delay calculator,” in Proc. DATE, 2024.
[6] S. Lin, G. Guo, T.-W. Huang, W. Sheng, E. F. Young, and M. D. Wong, “GCS-Timer:

Gpu-accelerated current source model based static timing analysis,” in Proc. DAC,
2024.

[7] Z. Guo, T.-W. Huang, and Y. Lin, “Gpu-accelerated static timing analysis,” in

Proc. ICCAD. ACM, 2020.

[8] ——, “Accelerating static timing analysis using cpu-gpu heterogeneous parallelism,”

IEEE TCAD, pp. 1–1, 2023.
[9] ——, “A provably good and practically efficient algorithm for common path pes-

simism removal in large designs,” in Proc. DAC. ACM, 2021.

[10] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A Lightweight Parallel

and Heterogeneous Task Graph Computing System,” in IEEE TPDS, vol. 33, no. 6,
2022, pp. 1303–1320.

[11] T.-W. Huang, C.-X. Lin, G. Guo, and M. D. F. Wong, “Cpp-Taskflow: Fast Task-

based Parallel Programming using Modern C++,” in Proc. IPDPS. IEEE, 2019, pp.

974–983.

[12] T.-W. Huang and M. D. Wong, “OpenTimer: A high-performance timing analysis

tool,” in Proc. ICCAD. IEEE, 2015, pp. 895–902.

[13] Z. Guo, T.-W. Huang, and Y. Lin, “HeteroCPPR: Accelerating common path pes-

simism removal with heterogeneous cpu-gpu parallelism,” in Proc. ICCAD. ACM,

2021.

[14] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “Gpu-accelerated path-based timing

analysis,” in Proc. DAC. ACM, 2021.

[15] ——, “Gpu-accelerated critical path generation with path constraints,” in Proc. IC-
CAD, 2021, pp. 1–9.

[16] G. Guo, T.-W. Huang, Y. Lin, Z. Guo, S. Yellapragada, and M. D. F. Wong, “A

gpu-accelerated framework for path-based timing analysis,” IEEE TCAD, pp. 1–1,
2023.

[17] H. Chen, “Static Timing Analysis with False Paths and Combinational Loops,” PhD

Thesis, University of Minnesota, USA, 2004.

[18] S. Tsai and C.-Y. R. Huang, “A false-path aware formal static timing analyzer

considering simultaneous input transitions,” in Proc. DAC. San Francisco CA:

ACM, 2009, pp. 25–30.

[19] Chul Rim, Soo-Hyun Kim, Joo-Hyun Park, Myung-Soo Jang, Jin-Yong Lee, Kyu-

Myong Choi, and Jeong-Taek Kong, “Fast and practical false-path elimination

method for large SoC designs,” in Proc. SOCC. Portland, OR, USA: IEEE, 2003, pp.

397–400.

[20] S. Zhou, C.-K. Cheng, B. Yao, H. Chen, Y. Zhu, M. Hutton, T. Collins, S. Srinivasan,

N.-C. Chou, and P. Suaris, “Efficient timing analysis with known false paths using

biclique covering,” IEEE TCAD, vol. 26, no. 5, pp. 959–969, 2007.
[21] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical

Approach, 1st ed. Springer Publishing Company, Incorporated, 2009.

[22] Haizhou Chen, Bing Lu, and Ding-Zhu Du, “Static timing analysis with false paths,”

in Proc. ICCD. Austin, TX, USA: IEEE Comput. Soc, 2000, pp. 541–544.

[23] J.-J. Liou, A. Krstic, L.-C. Wang, and K.-T. Cheng, “False-path-aware statistical

timing analysis and efficient path selection for delay testing and timing validation,”

in Proc. DAC, Jun. 2002, pp. 566–569.
[24] D. Blaauw, R. Panda, and A. Das, “Removing user specified false paths from timing

graphs,” in Proc. DAC. Los Angeles, CA, USA: ACM Press, 2000, pp. 270–273.

[25] Shuo Zhou, Bo Yao, Hongyu Chen, Yi Zhu, Chung-Kuan Cheng, M. Hutton,

T. Collins, and S. Srinivasan, “Improving the efficiency of static timing analy-

sis with false paths,” in Proc. ICCAD. San Jose, CA: IEEE, 2005, pp. 527–532.

[26] D. H. Du, S. H. Yen, and S. Ghanta, “On the general false path problem in timing

analysis,” in Proc. DAC. New York, NY, USA: ACM, 1989, pp. 555–560.

[27] S. Tsukiyama, M. Tanaka, and M. Fukui, “Techniques to remove false paths in

statistical static timing analysis,” in Proc. ASICON. Shanghai, China: IEEE, 2001,

pp. 39–44.

[28] G. Lucas, C. Dong, and D. Chen, “Variation-Aware Placement With Multi-Cycle

Statistical Timing Analysis for FPGAs,” IEEE TCAD, vol. 29, no. 11, pp. 1818–1822,
2010.

[29] T. Huang, G. Guo, C. Lin, and M. D. F. Wong, “OpenTimer v2: A New Parallel

Incremental Timing Analysis Engine,” IEEE TCAD, vol. 40, no. 4, pp. 776–789, 2021.
[30] M. Hutton, D. Karchmer, B. Archell, and J. Govig, “Efficient static timing analysis

and applications using edge masks,” in Proc. FPGA. Monterey CA USA: ACM,

2005, pp. 174–183.

[31] “Synopsys PrimeTime,” http://www.synopsys.com.

[32] R. M. Karp, Reducibility among combinatorial problems. Springer, 1972.

[33] R. G. Michael and S. J. David, Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., 1979.

[34] G. L. Steele, D. Lea, and C. H. Flood, “Fast splittable pseudorandom number gener-

ators,” in Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages & Applications, ser. OOPSLA ’14. New

York, NY, USA: ACM, 2014, p. 453–472.

[35] Z. Guo, F. Gu, and Y. Lin, “Gpu-accelerated rectilinear steiner tree generation,” in

Proc. ICCAD. ACM, 2022.

[36] J. Hu, G. Schaeffer, and V. Garg, “TAU 2015 contest on incremental timing analysis,”

in Proc. ICCAD. IEEE, 2015, pp. 882–889.

https://github.com/The-OpenROAD-Project/OpenSTA
http://www.synopsys.com

