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Abstract—Static timing analysis (STA) is an essential yet
time-consuming task during the circuit design flow to ensure
the correctness and performance of the design. Thanks to
the advancement of general-purpose computing on graphics
processing units (GPUs), new possibilities and challenges have
arisen for boosting the performance of STA. In this work, we
present an efficient and holistic GPU-accelerated STA engine.
We accelerate major STA tasks, including levelization, delay
computation, graph propagation, and multi-corner analysis, by
developing high-performance GPU kernels and data structures.
By dividing the STA workloads into CPU-GPU concurrent
tasks with managed dependencies, our acceleration framework
supports versatile incremental updates. Furthermore, we have
extended our approach to multi-corner analysis by exploring
a large amount of corner-level data parallelism using GPU
computing. Our implementation based on the open-source STA
engine OpenTimer has achieved up to 4.07 x speed-up on single
corner analysis, and up to 25.67x speed-up on multi-corner
analysis on TAU 2015 contest designs and a 14nm technology.

I. INTRODUCTION

With the advancement of design complexities and process
technology, the overall circuit design closure is increasingly
bounded by the timing analysis on circuit graphs consisting
of hundreds of process corners and billions of transistors.
To ensure the timing correctness and performance of the
design, static timing analysis (STA) is frequently invoked
in the iterative and incremental updates inside optimization
algorithms [1]. In response to millions of design modifications
performed by the optimization flow, the timer is required to
provide instant and accurate feedback on slack values and
timing criticality changes. To achieve acceptable performance
and design turnaround time, it is crucial to have an efficient
STA engine.

A number of parallel STA algorithms have been proposed in
previous works, including both commercial tools and academic
research [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. While
each has their advantages and drawbacks, nearly all of these
algorithms are inherently bound by the multithreaded paral-
lelism on a platform with central processing units (CPUs) and
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multi-core architecture. While some of these attempts have
gained runtime benefits, most of them stop scaling beyond
8—16 CPU cores [11], without more scalable replacements
above that. With the increasing computing capacity of modern
graphics processing units (GPUs), new possibilities have arisen
for boosting the performance of STA engines. However, it
is extremely challenging to develop an efficient STA engine
running on a CPU-GPU heterogeneous platform. Computing
the signal timing across a circuit graph involves both diverse
computational patterns and irregular memory access, including
dynamic data structures, graph-oriented computing, recursion,
and branch-and-bound, to name a few [3]. These patterns lead
to a vast and complex STA workload consisting of nontrivial
functional dependencies. We need very strategic data structure
models and decomposition algorithms to obtain a reasonable
STA runtime speed-up.

As design shifts to nanoscale, the timing effects from
process, voltage, and temperature (PVT) changes are more
and more tied to the successful tapeout of chips. The analysis
of such effects is done by multi-corner STA engines that
address all combinations of PVT corners in independent STA
runs, which bear a large memory footprint and huge runtime.
Most previous research on multi-corner STA acceleration [12],
[13], [14], [15], [16], [17] is limited to CPU-based parallelism
either within one or multiple STA processes. This organization
cannot efficiently explore large data parallelism exhibited by
multi-corner settings.

In this work, we present a new STA implementation on a
CPU-GPU heterogeneous platform. We propose GPU-efficient
acceleration kernels and data structures to offload major STA
computing steps to GPU. We implement our algorithms based
on the open-source STA engine OpenTimer, designed by
Huang et al [3]. Our algorithm’s core design philosophy is
universally applicable and can be applied to other STA frame-
works. The major contributions of this paper are summarized
in the following:

o We divide the STA workloads into CPU-GPU concurrent
tasks with managed dependencies by leveraging task-
based parallelism, effectively hiding data processing and
memory latency.

e« We develop high-performance GPU kernels and data
structures tailored to GPU parallelism for all major STA
operations including delay calculation, levelization, and
graph propagation.

e We implement our GPU-accelerated STA algorithms
based on a real-world STA framework with support to
industrial design formats and incremental timing. Our
techniques provide valuable insight into CPU-GPU per-



formance tradeoff in realistic scenarios.

e We extend our GPU algorithms to multi-corner timing
analysis by exploring data parallelism across the corner
dimension and proposing efficient memory mapping un-
der GPU memory constraints. We have demonstrated a
substantial extra performance benefit.

We evaluate our algorithm on the gate-level circuit netlists
from TAU 2015 Timing Analysis Contest benchmarks con-
sisting of large industrial designs [18]. We use a 14 nm
technology to provide realistic single-corner and multi-corner
cell libraries. We have achieved a significant speed-up on both
single-corner and multi-corner STA. As an example, on two
large circuit designs, netcard and leon2, we accelerate Open-
Timer by 4.05x and 4.07x using one GPU for single-corner
analysis. By computing 16 corners in parallel, we achieved
another 5.66x and 6.34x speed-up on these designs. We
also investigated the impact of several factors on incremental
timing performance, such as gate number, net count, and in-
cremental graph size, and provided recommendations on when
to use GPU or CPU. Given the composite of software tradeoffs
and architectural considerations we have made, we believe our
STA algorithm delivers a novel acceleration methodology.

The organization of this paper is listed as follows. In Sec-
tion I , we introduce the STA background, GPU architecture,
and our problem formulation. In Section III, we present details
of our multi-corner STA algorithm on GPU. In Section IV,
we demonstrate the experimental results on STA runtime
improvement. Section V summarizes the paper.

II. STATIC TIMING ANALYSIS

In STA, circuits are represented as directed acyclic graphs
(DAGS), where nodes represent pins of circuit components
and edges represent pin interconnects. Figure 1 illustrates an
example STA graph consisting of 4 logic cells, 5 primary ports,
and 7 nets. In order to compute the signal arrival times on this
timing graph, a graph-based STA engine performs two major
steps called forward and backward propagation. In forward
propagation, timing quantities such as delay, slew, and RC
are computed, and arrival time (AT) is accumulated according
to data dependencies. In backward propagation, timing con-
straints and slack statistics such as required arrival time (RAT)
are computed based on the forward propagation result. To keep
our discussion focused, we compute cell delays through the
nonlinear delay model (NLDM) based on 2D look-up tables
(LUTs) with load and slew indices, and net delays through
the widely known Elmore delay model. These models are
used in recent TAU 2014-2019 timing analysis contests [19],
[18], [20] with golden results available. The node criticality
is quantized by its slack defined as the difference between its
AT and RAT. Setup check and hold check, respectively, refer
to the late and early slack values.

A. Parallel STA Engines

The design complexity of modern VLSI systems are ever-
increasing, with millions to even billions of pins and in-
terconnect. Such a large amount of computation puts un-
precedented pressure on the analysis speed of STA engines

Forward propagation for arrival time
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Fig. 1: The STA graph of a circuit design. The blue nodes indi-
cate pins of components like gates and I/O ports. The arrows
indicate pin-to-pin connections. Delay values are quantified
using best (min) and worst (max) scenarios.

used to evaluate large designs. To shorten STA’s substantial
runtime, ongoing research has looked towards parallel and
distributed STA frameworks [2], [3], [6], [7]. Huang et al,
for example, developed OpenTimer, a timing analysis engine
that represents timing propagation jobs and their precedence
using a dependency graph of tasks [3], [6], [5]. Their result has
demonstrated up to 2x runtime improvement over loop-based
parallelization using OpenMP. Another attempt on parallel
timing graph propagation for FPGA designs is performed by
Murray et al and demonstrated 9x speed-up using 32 CPU
cores. Besides, new challenges on timing macro-modeling
[21], [22], common path pessimism removal [8], [9], [10],
and incremental timing are also raised by recent TAU contests
[19], [18], [20].

The multi-threading performance based on CPUs generally
saturates at roughly 816 threads, due to irregular computa-
tional patterns and threading overhead of STA [3], [7]. To
overcome the scalability challenge, timing analysis with GPU
acceleration is further investigated [23], [7]. Wang et al [23]
have explored GPU acceleration of the LUT interpolation
step during cell delay computation while leaving other STA
steps like levelization and net delay computation on CPU.
Regarding the kernel runtime, a more than 10x speed-up
has been demonstrated compared to their CPU version. The
work by Murray et al [7] mentioned before also investigated
timing propagation on GPUs. While their kernel runtime has
been 6.2x faster, the overall propagation runtime has become
even 0.9x slower over CPU, due to the memory transfer
overhead not accounted for in kernel runtime. In addition to
the above works, acceleration of statistical STA (SSTA) is also
attempted using GPUs and FPGAs, which is a different scope
of discussion [24], [25], [26].

To accurately address the runtime bottleneck of a real STA
run, we have profiled the widely-adopted open-source STA
engine OpenTimer [3], [5]. As OpenTimer is reported to
outperform commercial STA tools [3] in terms of speed, we
regard its runtime footprint as a common scenario in high-
performance STA engines. We draw its runtime decomposition
for a full graph-based timing analysis in Figure 2. As we can
observe in the figure, the RC timing step, including RC trees
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Fig. 2: The OpenTimer runtime decomposition (40 CPU cores)
inside one full timing process on a million-sized design.

construction and slew parameter updates across nets, takes
up a large percentage (48%) of the runtime due to the vast
amount of SPEF data to process [18]. Another significant
portion of runtime (42%) is taken by constructing levelized
task dependency graphs with a size proportional to the circuit
size, on which timing propagation is conducted. Handling the
signal relations between pins is a common burden in all STA
engines, due to its difficulty to be parallelized.

B. Multi-corner Timing Analysis in Advanced Nodes

With the continued increase of design complexity and
advancements in technology nodes, the timing behavior of
a circuit design is more and more involved with variations
introduced across design process, manufacturing noise, and
operating conditions 3. Therefore, multi-corner timing analysis
is proposed by repeatedly applying the STA engine on different
cell libraries characterized under different PVT conditions.
The number of such combinations is often tens or hundreds to
cover a large enough set of scenarios during signoff, effectively
magnifying the STA runtime by 10x or even 100x.

8 4 (ff, 0.72v, 25c) (ss, 0.99v, 85¢)

]

= @

S &

()

&Q

3 )

£

> v

:

>

Process

FF, TT, SS,..

Fig. 3: PVT corners are combinations of process, voltage, and
temperature parameters. They can be visualized as points in a
3-dimensional cube.

To reduce the runtime of the expensive multi-corner anal-
ysis, researchers have proposed a number of approaches re-
cently [12], [13], [14], [15], [16], [17]. One direction is to
apply branch-and-bound during corner parameter selection and
STA. For example, [17] proposes to prune the search space
of multi-corner exploration with delay upper-bound estima-
tions. This is further improved by [14] which runs different

branch-and-bound algorithms in parallel by CPU-based multi-
threading. Another direction is to approximate the corners by
incorporating prior knowledge like the clock tree update in
hold analysis [13] or the local linearity between similar corners
and modes [16], [15]. One recent direction applies machine
learning (ML) to multi-corner STA by predicting unobserved
corners given observed ones [12]. However, they still suffer
from about 10% maximum error due to the inherent stability
and explainability problem of ML models.

Despite extensive research on multi-corner analysis, most of
them are limited to CPU-based parallelism. Worse still, they
introduce accuracy loss in the multi-corner analysis results in
exchange for speed. Such accuracy loss can be significant in
more advanced nodes due to highly nonlinear timing effects
and more complex timing models. Since the circuit structure
does not change across different corners, a large amount of
data parallelism remains unused.

C. GPU-Accelerated STA Challenges

Hybrid compute systems with heterogeneous computing
resources like CPUs and GPUs are becoming increasingly
prevalent. Contrary to a CPU consisting of a few high-
performance big cores, a GPU is made up of thousands of
tiny cores arranged into streaming multiprocessors. It attempts
to achieve a high throughput through extensive parallelization
while minimizing threading costs. For instance, the RC timing
computation for different nets can be done independently
because the RC delay and slew parameters can be isolated [18].
Furthermore, the GPU’s compute capability can also be used
to sort out dependent tasks by computing a topological order
in parallel. We highlight below 3 challenges for speeding up
these STA tasks.

1) Irregular computational patterns: nearly all STA tasks
contain irregular computation patterns, including recur-
sive procedures, dynamic data structures, and graph
traversal.

2) Frequent memory access: even though the RC delay
computation for different nets are independent, each
of them requires randomly accessing GBs of memory
on million-gate designs, due to detailed parasitics and
various local RC tree structures.

3) Large multi-corner memory footprint: in multi-corner
analysis, memory access problems are worsened by an
additional 10-100x, due to memory footprint propor-
tional to the number of corners. This gives even more
pressure on memory and cache management.

The above challenges require very strategic data structure
models and decomposition algorithms to obtain a reasonable
runtime speed-up.

III. ALGORITHM

In this section, we present our GPU acceleration algorithm
details. Our overall taskflow is presented in Figure 4, where
each arrow indicates a task dependency. There are 3 basic
steps in our taskflow: RC delay computation, timing propaga-
tion, and levelization. The timing propagation step is further
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Fig. 4: Overall taskflow of our GPU-accelerated multi-corner
STA engine. The green frame captures the tasks running in
parallel for a batch of corners.

CPU Tasks

decomposed to forward propagation and backward propaga-
tion. In Figure 4, dark color indicates GPU-accelerated steps,
including RC delay computation, RC tree flattening, forward
propagation, and levelization. Because backward propagation
has a much lower workload and nearly negligible runtime, we
leave it on CPU. We focus on using GPU to address the major
scalability issues and runtime bottlenecks shown in Figure 2.

A. RC Delay Computation

A majority of STA runtime is taken by the RC delay
computation step [18]. We begin by analyzing the model and
the equations for calculating the delay and slew parameters
through an RC network. Then we demonstrate how to build
GPU-friendly data structures and algorithms. We adopt a vari-
ant of the Elmore delay model [18] to approximate intercon-
nect delay, which had been widely adopted by many different
STA engines [3], [8], [11]. We approximate the interconnect
delay based on an Elmore delay model variant [18] that had
been implemented by many STA engines [3], [8], [11]. As
illustrated in Figure 5, our goal is to calculate the impulse
and delay between the source pin (Port) and each sink pin
(Taps).

CPU Implementation [3]. Dynamic programming (DP) is
a standard approach to implementing RC delay calculation.
There are four stages in this algorithm:

1) Compute the pin load (i.e. the lumped capacitance) for
each node u, denoted as load,,.
loadgy =Cap 4 + Capp + Caps + Capp

1
=Cap 4 + loadp + loadp. M

569 500

Parent list representation in memory

o B0 B EE
(b)

Fig. 5: Example of a net RC tree model with parasitics. (a) The
edge resistance and node capacitance on parasitic RC tree. (b)
The BFS order of nodes represented as a 1D flattened array
with a list of parent indices.

2) Compute the delay between Port and u, denoted as
delay,, .

Z CapyRPort—)LCA(u,v)y 2

vEnodes

delay,, =

where LCA denotes lowest common ancestor.
delayg =Rz 4Cap 4 + Rz 4 Capp+
(Rzsa+ Rasp)Capp+
(Rz—a+ Rasp)Cape
=delay 4, + Ra_ploadp.

3)

3) Calculate the sum of capacitance and delay products in
subtrees of u, denoted as Idelay,,, similar to step 1.

4) Calculate the beta and impulse parameters between the
source Port and the sinks u, based on the Idelay of
nodes, similar to step 2.

On CPU implementations, each parameter is typically com-
puted using several passes of RC tree traversals. This yields
a linear runtime complexity proportional to the tree size,
although it may not be GPU-efficient due to its irregular
recursions. Therefore, in our GPU implementation, we choose
to use breadth-first search (BFS) traversals. In our BFS
implementation instead, we precompute once a node order for
each RC tree. This order ensures that every parent node is
before any of its children. In other words, a tree edge u — v
makes u appear before v in the BFS order, as illustrated in
Figure 5. The BFS order represents the structure of an RC tree
concisely and efficiently for GPU execution. All we need to
do is to visit the tree nodes forwardly or backwardly via the
ordered sequence, according to the DP update directions.

Algorithm 1 is our algorithm for GPU-accelerated RC tree
flattening. It computes the node BFS order of one net using an



Algorithm 1: Flatten RC Trees

Algorithm 2: Compute RC Delay for Corner Batches

Input: N as #nets, (M, E) as (#nodes, #es) in all nets
Input: roots[0..N — 1], the root indices of each net

Input: es[0..E — 1], the undirected edge {(a,b)}

Input: ndstart[0..N], the offsets of each net in node arrays,
with ndstart[N] = M

estart][0..N], the offsets of each net in edge arrays,
with estart[N] = E

Input: dis[0..M] = oo, cnts[0..M] =0

Output: order[0..M — 1], the BFS order for each net

/% Process one net w/ blockDim.x threads =/

Input:

1 netID = blockldx.x; > gridDim.x = #nets
2 threadID = threadldx.x; > blockDim.x = 64
3 nst = ndstart[netID]; > start node offset
4 nend = ndstart[netID + 1]; > end node offset
5 est = estart[netID]; > start edge offset
6 eend = estart[netID + 1]; > end edge offset
7 dis[nst 4+ roots[netID]] = 0;

g ford =0, 1, 2, ..., (nend — nst) do

9 for ¢ = est + threadID to eend step blockDim.x do
10 (a,b) = edgelist][i];

1 if dis[a] == d and dis[b] >d + 1 then

12 dis[b] =d +1;

13 atomicAdd (cnts[d], 1);

14 end

15 else if dis[b] == d and dis[a] >d + 1 then

16 disla] =d +1;

17 atomicAdd (cnts[d], 1);

18 end

19 end

20 __syncthreads();

21 break when cnits[d] == 0;

22 end

(3
w

countingSort (dis, cnts, order, threadlD) ;

input edge list in two stages: (1) computing distances to root
for each node, and (2) sorting nodes by their root distances.
The time complexity of the first step is O(n?) where n denotes
the net size. Because of the limited net size (usually less than a
few hundred), such an O(n?) algorithm is efficient enough and
can be even better parallelized on GPU due to its simplicity.
A block of 64 threads are launched for each net to process
its edge list. The edge list would be traversed multiple times
to compute the order. In each iteration (lines 9-19), we obtain
a new batch of nodes with the same root distance. Finally,
we sort all nodes by their root distance using a GPU parallel
counting sort with O(n) time complexity.

Based on the computed BFS order, the pseudocode for
our RC computation GPU kernel is shown in Algorithm 2.
We launch one kernel thread for each unique combination of
Early/Late, Rise/Fall, net index, and corner index in a corner
batch. The details of multi-corner parallelism are introduced
later in Section III-E. Firstly, the netID and condID are
computed on lines 1-4. We compute the net data offsets in
parameter arrays on lines 5-6 and fill the output arrays with
initial zero values on lines 7-8. After the initialization, we
traverse and calculate the RC parameters load (lines 9-12),
delay (lines 13-16), Ildelay (lines 17-20), beta and impulse
(lines 21-25).

Our algorithm works on our optimized RC tree data struc-
ture on GPU memory, where we store parent indices in the

Input: N as #nets, M as #nodes in all nets, BC' as the

batch size of multi-corner settings

st[0..N], the offsets of each net in arrays of nodes

parent[0..M — 1], the index of parent of every nodes

resp[0..M — 1], the resistance between nodes and

their parent

cap[0..4M — 1][BC], the capacitance of nodes, each

in 4 different combinations

Output: load[0..4M — 1][BC], delay[0..4M — 1][BC],
impulse[0..4M — 1][BC]: arrays of results of load,
delay and impulse, respectively

net = blockldx.x x blockDim.x + threadldx.x;

cond = threadldx.y;

corner = threadldx.z;

if net > N then return;

offsetL = st[net];

offsetR = st[net + 1];

Initialize load, delay, ldelay to zero;

Initialize 8 = 0 as an auxiliary array;

for j = offsetR — 1 down to offsetL do

load[4j + cond][corner] += cap[4j + cond][corner];

load|4parent[j] + cond][corner] +=

load[47 + cond][corner];

Input:
Input:
Input:

Input:

> node offset start
> node offset end

o N A R W N =

_-
- o

12 end
13 for j = offsetL + 1 to offsetR — 1 do
14 t = load[4j + cond][corner] X resp[j];
15 delay[4j + cond][corner] =
delay[4parent[j] + cond][corner]| + t;
16 end
17 for j = offsetR — 1 down to offsetL do
18 ldelay[4j + cond][corner] +=
cap[4j + cond][corner] x delay[4j + cond][corner];
19 ldelay[4parent[j] + cond][corner] +=
load[47 + cond][corner];
20 end
21 for j = offsetL + 1 to offsetR — 1 do
2 t' = ldelay[4j + cond][corner] x resp[j][corner];
23 B[4j + cond][corner] =
Bldparent[j] + cond][corner] 4+ t';
24 impulse[4j + cond][corner] =

28[4j + cond][corner] — delay[4] + cond][corner]?;
25 end

parent array for all RC tree nodes (Figure 5(b)). This concise
representation of parent-child relations on GPU ensures a
balanced workload during different DP update passes. We take
the recursive equation of load as an example,

D

ve{children of u}

load,, = cap,, + load,, €]

as also illustrated in Figure 6(a). Because we only keep parent
indices instead of a large adjacency list, we cannot enumerate
all children of the node u and compute the sum as the equation
requires. Instead, we equivalently regard the load,, as running
sums. Algorithm 2 amend the running sum at « on all children
of u (lines 11), progressively arriving at the final result.
Because the children of u appear after u in the BFS order,
and because we scan the BFS order from backward, we would
already have processed all children of u before encountering
u in the sequence.

Another example is the recursive equation of delay, which



(a) Upward (b) Downward

Fig. 6: Two different DP directions. (a) Upward recursive
update, where the value of children needs to be computed
before the value of parents. (b) Downward recursive update,
where the parent values are computed before children.

has a different direction:
delay, = delay,, + pres, % load, (5)

as shown in Figure 6(b). Here u denotes the parent of v. This

equation is straightforward to implement using our array of

parent indices and a forward BFS order scan (lines 14-15).
The updates of Ildelay and beta share similar patterns with
load and delay and can be done analogously.

The bottleneck of RC computation is irregular global mem-
ory access with a large number of nets and independent
analysis combinations. To address this, we design a data struc-
ture that is friendly for global memory access. We optimize
memory bandwidth usage by interleaving the memory for the
4 Early/Late Rise/Fall combinations, instead of arranging them
separately (Figure 7 (a) and (b)). For multi-corner analysis, we
interleave different corners by assigning the corner dimension
as the innermost array indices. This creates more memory co-
alescing capability as shown in Figure 7 (c). This arrangement
ensures that adjacent 4 threads emit adjacent memory requests,
which corresponds to the index equation 4i+ cond for the i-th
node and the cond-th combination in Algorithm 2.

B. Levelization

Levelization is an STA step that constructs level-by-level
task dependencies for timing propagation tasks [3]. It takes up
nearly 40% of the full timing runtime (shown in Figure 2). The
inefficiency is caused by its single-threaded nature. Existing
STA engines, including commercial tools like [11], perform a
single-threaded DFS or BFS on the circuit logic to construct a
level list and guide the parallelization of node tasks. This data
structure is very time-consuming to maintain. As a result, we
present a levelization algorithm with GPU acceleration.

Algorithm 3 shows our GPU-accelerated levelization pro-
cess. Our key idea is to keep a node set F' at the cur-
rent level, called frontiers. Nodes that have no input edges
(i.e., circuit primary input pins) become the initial frontiers
(lines 1). The algorithm repeats through lines 3-6 until we
have processed all nodes. On each iteration, a GPU kernel
advanceFrontiers is invoked to find the next frontiers
based on current ones in parallel.

Early, Rise Early, Fall Late, Rise Late, Fall
1 2 3 1 2 3
(@
1 1 2 2 3 3
Early, Rise

(b)

Early, Rise, 4 Corners  Early, Fall, 4 Corners

Late, Rise, 4 Corners Late, Fall, 4 Corners

1 1 1 1 1 1 1 1

(©)

Fig. 7: Memory arrangement for Early/Late and Rise/Fall
cases. (a) Independent access; (b) Interleaved access; (c)
Interleaved access with multi-corner optimization.
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Fig. 8: The resulting level list for the circuit graph in Figure 1,
as well as the levelization process on GPU. Node names in
bold indicate frontiers at the current iteration.
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The advanceFrontiers procedure accepts a list of
current frontiers and launches one thread to process a sin-
gle frontier. The output edges of frontiers (lines 11-16) are
enumerated. We decrement the in-degree of a node v by one
for each output edge pointing to it. We push v to the next set
of frontiers once its in-degree drops to zero after a decrement.

In this algorithm, the edge explorations of different frontiers
are performed simultaneously, while the output edges from one
frontier are processed one by one. The workload among GPU
threads is proportional to the out-degree of nodes, which can
be very imbalanced. We have adopted a reverse technique to
tackle this problem by observing that the in-degrees of nodes
are generally smaller and much more balanced. For example,
in netcard [18] with 1.5M of gates, the maximum out-degree



Algorithm 3: Levelization

Algorithm 4: Multi-Corner LUT Interpolation

Input: nodes, the set of graph nodes
Data: the current in-degree in and the adjacency list out
Output: a node level list

1 F+ {f €nodes : iny = 0};

2 while F' is not empty do

3 output F;

4 F' «{}

5 Call advanceFrontiers on F and get F’;
6 F « F';

7 end

8 Kernel Function advanceFrontier:

Input: the old frontier F'

Data: the adjacency list out, in-degree array in
Output: the new frontier F’

9 nodelD < blockIldx.x x blockDim.x + threadldx.x;
10 if nodeID > size(F') then return;

11 for v in out[nodelD] do

12 oldvalue < atomicAdd (infv], -1);
13 if oldvalue = 1 then

14 | Addvto F';

15 end

16 end

17 return G;
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Fig. 9: Example of 1D lookup table query. This 1D lookup
table is essentially a piecewise linear function with three
segments s1, S2, s3. There are two queries ¢ (that hits s;) and
g2 (that hits s3). We get the result by evaluating the queried x-
value on the specific segment, regardless of interpolation (like
q2) or extrapolation (like g7).

and in-degree are 260 and 8, respectively. We reverse the
edge directions before running the levelization on the graph,
which gives higher parallelism during the edge exploration.
After the levelization, we can retrieve the level orders of the
original graph by reversing back the level orders, as illustrated
in Figure 8. The level list of large designs typically gives
thousands of independent node tasks in each level, leading to
enough parallelism for propagation.

C. Timing Propagation and LUT

According to the runtime decomposition in Figure 2, the
timing propagation step is efficient on CPU because of the
small LUT size. Despite this, we managed to obtain a modest
speed-up, especially for million-gate circuit designs, by mi-
grating it to GPU. In NLDM model, the delay and slew for
cell arcs are modeled by a piecewise linear 2D function with
input slew and output capacitance as its inputs. This function
is characterized by around 7 x 7 sample points obtained from
circuit simulations and queried by bilinear interpolation.

/* Input: line (z1,y1)-—(22,y2) %/
/* Input: the z value queried */
1 Function interpolate (z1,x2,¥y1,y2,T):

2 if 1 = z2 then return y;

3 else return di + (d2 — d1) ;2__‘"”;1 ;

4 end

/* Input: m X m look-up table with corner
batch BC %/
/* Input: the point queried (z,y) and the
corner index corner */

5 Function 1ut_lookup (n,m, X, Y, mat,x,y, corner) :

6 i« 0;

7 i< min(l,n —1);

8 while i + 1 < n and X[i] < z do

9 i i

10 141+ 1;

11 end

12 7« 0;

13 j < min(l,m —1);

14 while j + 1 < m and Y[j] <y do

15 i~ 7

16 1+ J+1

17 end

18 ry <—interpolate (Y[j'], Y[j], mat[i’, j'][corner],
mat[i’, j][corner]) ;

19 r; <interpolate (Y[j'], Y[j], mat[i,j'][corner],
mat[i, j][corner]) ;

20 r <interpolate (X|[i'], X[i],ri,7:);

21 return r;

22 end

We present our GPU-accelerated LUT table lookup algo-
rithm in Algorithm 4. We calculate 2D bilinear interpolations
using three 1D linear interpolations of sample points (lines 18-
20). Given a single z, each 1D linear interpolation finds the y
of a piecewise linear polyline at . When the given x exceeds
the range of sample points, an extrapolation is performed
instead of interpolation, which introduces a branch divergence
on GPUs. To this end, we generalize the process to cover
both extrapolation and interpolation under the same code, as
illustrated in Figure 9. The idea is to locate the line segment
(or half-line) where z locates and then use a unified equation
to solve y. We deal with the cases where LUT degenerated
to a row, a column, or a single value, by setting i = ¢ in
these cases. A linear search is performed to find these indices
because of the small size of LUTs.

D. Device-to-device Data Bridge between STA Steps

During the STA process, consecutive STA steps need to ex-
change intermediate timing analysis data. For example, the RC
delay step computes net delay, capacitive load, and impulse,
which are used in propagation to compute the signal arrival
time. However, such communication is difficult to handle due
to the data-structural difference between flattened RC trees
and levelized arc tables. In STA engines like OpenTimer [3],
a CPU is used to “translate” the timing data between different
structures. In the multi-corner case, this is no longer scalable
due to the data size proportional to the number of corners.

To solve the above problem, we present Algorithm 5 as
our device-to-device data transfer algorithm that bridges the



gap between RC delay computation and timing forward prop-
agation. The algorithm makes use of both CPU and GPU. On
CPU, the algorithm preprocesses a mapping of memory offsets
between flattened RC trees and the flattened arc table (lines 1—
10). The mapping itself is small in size because it is set up
only once for every single net arc, regardless of the number
of corners and signal rise/fall conditions. After the mapping
is ready, the algorithm copies it to GPU (line 11), where it is
used to move groups of timing data to their destined locations
(lines 12-18).

Algorithm 5: Device-to-device Data Transfer

/* CPU code */
arcid2flatpos <+ [1;
for every net i do
r <— driver pin of net ¢;
L, R <+ the range of net ¢’s flattened RC storage;
for every sink pin p in net i do
t <— the index of arc r — p;
t' « the position of p in [L, R];
arcid2flatpos[t]+ t';
end
end
copy arcid2flatpos to GPU;
/+ GPU code */
12 delay, impulse <— the GPU RC delay/impulse array;
13 arcdelay, arcimpulse <— the GPU flattened arc table;
14 arcid < blockldx.x x blockDim.x + threadIldx.x;
15 elrf < threadldx.y;
16 corner < threadldx.z;
17 arcdelaylarcid, elrf, corner]<— delay[arcid2flatpos[arcid],
elrf, corner];
18 arcimpulselarcid, elrf, corner]«—
impulselarcid2flatpos|arcid], elrf, corner];
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E. Multi-corner GPU Parallelization

For each PVT condition under multi-corner STA, the STA
engine computes the circuit delay and slack using a unique cell
library with its own set of pin loads and LUTs. Parallelization
between corners can exceed tens or even hundreds, with
following properties:

1) While pin loads and LUTs are re-modeled, the circuit

topology remains unchanged across different corners.
The topology-related computation (including RC tree
flattening in Section III-A and levelization in Sec-
tion III-B) can thus be cached and reused.

2) The computation across different corners have similar
patterns and almost no branch divergence. This leads to
efficient GPU-friendly single-instruction-multiple-thread
(SIMT) behavior.

Fully utilizing these properties, we develop a GPU-
accelerated multi-corner STA flow. Storing all intermediate
results for hundreds of corners is impractical on the limited
GPU memory. Moreover, the thread block size proportional to
the number of concurrent corners poses inefficient restrictions
on GPU thread block scheduling. As such, we split the PVT
corners into equal-sized batches with BC' corners each, and
compute the batches iteratively. In order to maximize data
parallelism and SIMT performance, we put the corner iteration

OpenTimer Ours

Update RC Timing ® Build Prop Tasks Update RC Timing ® Build Prop Tasks

® Update Graph Timing H Update Graph Timing

Fig. 10: Runtime breakdown of the circuit leon2 (21M nodes).

into the most inner loop, i.e. the last index of the 3-dimensional
CUDA thread group. Meanwhile, we also arrange the memory
structure similar to Figure 7 so that memory requests from
consecutive corners are interleaved and thus coalesced.

IV. EXPERIMENTAL RESULTS

We implemented our GPU-accelerated STA algorithm on
top of OpenTimer [3] and evaluated the results using TAU15
contest benchmarks [18]. We re-synthesized all the bench-
mark netlists under an industrial 14nm technology. This gives
realistic multi-corner cell libraries under different operating
conditions. We do not compare with commercial tools (e.g.,
PrimeTime, OpenSTA) because they do not support GPU.
Also, such a comparison may not be fair because of different
application scopes. All experiments are undertaken on an
Ubuntu Linux machine with 40 CPU cores at 2.10 GHz,
512 GB RAM, and 1 Nvidia A40 GPU. We configured the
kernel execution with about 128 threads per block for all GPU
kernels. Our algorithms are implemented using the parallel
task programming framework, Taskflow [5], [27] to schedule
CPU-GPU dependent tasks. We measured the end-to-end STA
runtime including both GPU kernels and memory preparation
operations.

A. Single-corner Full Timing

Table I lists the benchmark statistics and the overall perfor-
mance comparison between our approach and OpenTimer. We
measure the runtime to complete one iteration of full-timing
update on 15 benchmarks. The netlists of these benchmarks
were used in TAU1S5 Contest to evaluate contestants’ entries
at a large scale. The gates of these netlists are re-mapped
to a new cell library under 14nm technology. We ran both
OpenTimer and our algorithm using the maximum hardware
concurrency of 16 CPUs and 1 GPU on our platform. Our
runtime is faster than OpenTimer across all but the smallest
benchmarks. The three largest speed-up values we observed
are 4.05x on netcard (1.5M gates), 4.07x on leon2 (1.6M
gates), and 3.51x on leon3mp (1.2M gates). The speed-up
values become remarkable at large designs when generated
STA graphs contain tens of millions of nodes and edges.

Figure 10 shows the runtime breakdown of OpenTimer and
our algorithm for notable items (>1000 ms) on the largest



TABLE I: Performance comparison between OpenTimer (16 CPUs) and our GPU-accelerated implementation (1 GPU) to
complete one iteration of full timing on large designs (>10K gates) of TAU 2015 contest benchmarks under 14nm technology.

OpenTimer Our Runtime [28]
Benchmark #PIs | # POs # Gates # Nets # Pins # Nodes # Edges Runtime (16 CPUs 1 GPU)

(16 CPUs) | Runtime [ Speed-up
aes_core_14nm 260 129 22938 23199 66221 413058 499688 276 ms 283 ms 0.98 x
vga_lcd_14nm 89 109 139529 139635 380730 1949332 2636815 1368 ms 659 ms 2.08 %
vga_led_iccad_14nm 85 99 259067 259152 662179 3539206 4234464 2612 ms 951 ms 2.75%
b19_14nm 22 25 255278 255300 776320 4416480 5623578 3520 ms 1155 ms 3.05x
cordic_ispd_14nm 34 64 45359 45393 127993 730590 910649 508 ms 369 ms 1.38x
des_perf_ispd_14nm 234 140 138878 139112 371587 2095933 2473864 1679 ms 649 ms 2.59%
edit_dist_ispd_14nm 2562 12 147650 150212 416609 2555873 3562491 2056 ms 799 ms 2.57x%
fft_ispd_14nm 1026 1984 38158 39184 116139 631491 868498 457 ms 353 ms 1.29x
leon2_14nm 615 85 1616369 | 1616984 | 4178874 | 22450936 | 28114268 23928 ms 5879 ms 4.07x
leon3mp_14nm 254 79 1247725 | 1247979 | 3267993 | 17647115 | 22807349 18174 ms 5174 ms 3.51%
netcard_14nm 1836 10 1496719 | 1498555 | 3901343 | 21023425 | 25014009 21320 ms 5259 ms 4.05x
mgc_edit_dist_14nm 2562 12 161692 164254 444693 2431266 3355118 1913 ms 793 ms 2.41x
mgc_matrix_mult_14nm | 3202 1600 171282 174484 489670 2710343 3415291 1906 ms 798 ms 2.39%
pei_bridge32_14nm 160 201 40790 40950 108172 577083 696170 404 ms 318 ms 1.27x
tip_master_14nm 778 857 37715 38493 95524 533690 602224 341 ms 338 ms 1.01x

# PIs: number of primary inputs # POs: number of primary outputs
# Pins: number of pins  # Nodes: number of nodes in the STA graph

benchmark, leon2. OpenTimer spends 9742 ms to sort out the
pin dependency, due to its unavoidable overhead on additional
data structures and sequential nature. In our implementation,
we use GPU to levelize the graph and run multiple tasks
(e.g., update RC timing) in a single batch. We do not need as
many tasks as OpenTimer but a single kernel to establish the
topological dependency, which leads to just 2157 ms runtime.
We observe a large amount of runtime reduction from updating
RC timing. It takes 11066 ms for OpenTimer to finish RC
timing whereas we reach the goal by 7.16 x faster. Our runtime
for updating the graph timing is a bit faster (1460 ms vs 2433
ms), due to our GPU-based LUT interpolation.

leon2 (22.6M nodes) netcard (21.1M nodes)
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Fig. 11: Runtime values at different numbers of CPUs. Our

runtime under 2 CPUs and 1 GPU is faster than OpenTimer

of 16-40 CPUs.

Figure 11 draws the runtime scalability versus increasing
numbers of CPUs on the two largest designs, leon2 and
netcard. Increasing the number of CPUs can speed up our
overlapped CPU-GPU tasks with faster data transforms. We
observe both methods scale up to 10 CPUs. Regardless of
CPU numbers, our runtime is always faster than OpenTimer,
and there exists a remarkable gap. The largest speed-up occurs
at 40 CPUs, where ours is faster than OpenTimer by 4.81x
on leon2. These results clearly demonstrate the strength of our
approach that unleashes the computing power of GPUs beyond
the limitation of CPU-based parallelism.

# Gates: number of gates  # Nets: number of nets
# Edges: number of edges in the STA graph

B. Single-corner Incremental Timing

The success of GPU acceleration relies on a large enough
data size and computation, which is abundant in the case of
full timing updates on STA graph. During incremental timing,
computation varies and may scope to a small local region
or the entire timing landscape. Pins in this region are called
propagation candidates which are the union of fan-in and fan-
out cones spanned by frontier pins in incremental timing [3].
Considering the distinct performance characteristics between
CPU and GPU, the most effective approach to incremental
timing is a mixed strategy. When the number of propagation
candidates is large, we use GPU; or we fall back to the existing
CPU version of OpenTimer when propagation candidates are
scarce.
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Fig. 12: Runtime values at different problem sizes. Beyond
about 60K propagation candidates, our runtime is always faster
than OpenTimer at any CPU numbers.

Figure 12, 13, 14 compares runtime at different sizes of
problem candidates, nets, and gates, respectively, between our
GPU algorithm and OpenTimer under different CPU concur-
rency. For problem size smaller than 10K, we run slower than
OpenTimer but the runtime difference is negligible (< 80
ms). Beyond the threshold of 67K propagation candidates, our
runtime is always faster than OpenTimer. The performance
margin becomes bigger as we increase the problem size. In
terms of the number of nets, the threshold is about 40K nets.
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Fig. 13: Runtime values at different net counts. Beyond about
40K nets, our GPU-accelerated RC computation is always
faster than OpenTimer, regardless of CPU numbers.
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Fig. 14: Runtime values at different numbers of gates (~LUT
numbers). Beyond about 45K gates, our GPU-accelerated LUT
interpolation becomes faster than OpenTimer.

We observe little benefit at small net counts due to the data and
kernel overheads, but we are consistently faster at larger net
counts. The threshold of gate numbers is roughly 45K, which
corresponds to 360K LUTs. As LUT interpolation is less
data- and compute-intensive than other tasks, the performance
margin is expected to become closer with increasing number
of CPUs. To sum up, the performance benefits of our GPU-
accelerated STA algorithm are remarkable when applications
define large numbers of propagation candidates, for example,
timing-driven placement and routing [29], [30].

C. Multi-corner Analysis

In this section, we present our results on multi-corner
STA acceleration. Our industrial 14nm technology includes a
diverse range of cell libraries under voltages ranging in [0.66,
0.99], temporatures ranging in [-40c, 125c], and 3 different
process corners (ff, ss, tt). We choose 128 corners from all
available libraries for testing. Table II shows a detailed runtime
comparison between our single-corner and multi-corner anal-
ysis, with multi-corner batch size set to BC' = 2,4, 8,12, and
16. Despite both running on GPU, our multi-corner algorithm
outperforms our original single-corner algorithm by a large
amount. On large designs like leon2, leon3mp, and netcard, we
can achieve 3.85x-3.90x speed-up by computing 4 corners in
parallel, compared to computing corners one by one. A larger
batch size gives better performance. By computing 16 corners
in parallel, the speed-up on leon2, leon3mp, and netcard
is enlarged to 5.66x—6.34x. These results have proven the

efficiency of our GPU-accelerated multi-corner STA algorithm
on exploring data parallelism across corners.
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Fig. 15: Runtime values at different corner batch sizes (BC')
for analyzing 128 corners. The data point at BC' = 1 comes
from our GPU-accelerated single-corner STA engine, which
is our conference version [28]. Other data points are collected
using our multi-corner STA engine.

Figure 15 visualizes the runtime with respect to BC' on the
two largest designs, leon2 and netcard. With our multi-corner
acceleration techniques, a drastic speed-up can be obtained
compared to the state-of-the-art GPU-accelerated single-corner
STA engine (BC' =1 in Figure 15). A larger batch size leads
to a better performance, which saturates at around BC' = 16.
Note that regarding data parallelism, a batch size of 16 already
fulfills the half-warp SIMT dispatching scheme of current
CUDA architecture and can eliminate branch divergence com-
pletely.

Note that when compared with the original CPU-based
OpenTimer, a speed-up ratio in Table II should be multiplied
with the GPU acceleration speed-up in Table I, which is itself
3.51x-4.07x. This yields an overall speed-up of 22.14x—
25.67x compared to running OpenTimer repeatedly for all
corners. We also note that the speed-up ratio is larger for
smaller designs. For example, on cordic_ispd, des_perf_ispd,
and tip_master, the multi-corner speed-up ratio is more than
8. Such counterintuitive results may come from their smaller
memory footprint, due to our extensive GPU memory usage
proportional to the batch size BC' used.

V. CONCLUSION

In this paper, we have presented a new GPU-accelerated
STA algorithm to go beyond the scalability of existing meth-
ods. We have developed GPU-efficient data structures and
algorithms to speed up essential tasks, including levelization,
delay computation, and timing propagation in updating an
STA graph. We have leveraged task parallelism to describe
dependent CPU-GPU tasks such that data processing and
kernel computation are efficiently overlapped. We have scaled
our GPU acceleration to the analysis of multiple PVT corners,
which yields further runtime improvements. Compared to the
state-of-the-art STA engine, OpenTimer, we achieved up to
4.07x speed-up on a large design of 1.6M gates and 1.6M
nets using 1 GPU. By computing 16 corners in parallel, we
achieved another 5.66x speed-up.

Our future work includes developing GPU-accelerated al-
gorithms for different delay calculators, including current



TABLE II: Performance comparison between our single-corner STA engine [28] and our multi-corner STA engine under
different multi-corner batch size BC' = 2,4,8,12,16 to complete an 128-corner timing analysis on given designs.

One by One | 2-way Parallel [ 4-way Parallel [ 8-way Parallel [ 12-way Parallel [ 16-way Parallel |

Benchmark Runtime | Runtime  Speed-up | Runtime  Speed-up | Runtime  Speed-up | Runtime Speed-up | Runtime  Speed-up |
aes_core_l4nm 36198 9984 3.63x 6005 6.03x 4896 7.39% 4693 7.71x 4661 7.77%
vga_led_14nm 84369 28459 2.96x 18635 4.53x 13611 6.20x 13053 6.46x 11192 7.54%
vga_led_iccad_14nm 121711 43157 2.82x 28384 4.29% 20672 5.89% 18861 6.45x 18539 6.57x
b19_14nm 147849 55573 2.66x 36032 4.10x 27067 5.46x 25087 5.89% 22251 6.64x
cordic_ispd_14nm 47241 11968 3.95% 8352 5.66x 6283 7.52x 6208 7.61x 5752 8.21x
des_perf_ispd_14nm 83132 25067 3.32x 16277 S5.11x 11632 7.15% 11158 7.45% 9659 8.61x
edit_dist_ispd_14nm 102255 30784 3.32x 21216 4.82x 15472 6.61x 14733 6.94x 13275 7.70x
fft_ispd_14nm 45244 10837 4.17x 7829 5.78x 6997 6.47x 6057 7.47x 6091 7.43%
leon2_14nm 752512 306496 2.46x 195424 3.85% 152859 4.92x 139099 541x 133053 5.66x
leon3mp_14nm 662263 250795 2.64x 171936 3.85% 122939 5.39% 110447 6.00x 105013 6.31x
netcard_14nm 673109 276992 2.43% 172576 3.90x 122229 5.51x 111485 6.04x 106096 6.34x
mgc_edit_dist_14nm 101547 34069 2.98x 20811 4.88x 15888 6.39x 14285 7.11x 13523 7.51x
mgc_matrix_mult_14nm 102153 32000 3.19% 22944 4.45% 15403 6.63x 14527 7.03% 13608 7.51%
pei_bridge32_14nm 40670 10133 4.01x 7275 5.59% 5589 7.28 % 5163 7.88x 4939 8.23x
tip_master_14nm 43221 9643 4.48 % 7499 5.76x 5477 7.89% 5265 8.21x 4861 8.89x

Runtime: The runtime for analyzing 128 corners in milliseconds.
One by One: Running our GPU-accelerated single corner analysis [28] for 128 times.
BC-way Parallel: Running our GPU-accelerated multi-corner analysis with batch size set to BC, for 128/BC' times.

source cell delay models and reduced-order wire delay models.

We

also plan to incorporate GPU task parallelism using

CUDA graph feature [31] to reduce the overhead of CUDA
streams and enable multiple GPUs acceleration for other time-
consuming STA tasks (e.g., path-based analysis [32], [33]).
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