
GPU-Accelerated
Static Timing Analysis

Zizheng Guo1, Tsung-Wei Huang2, Yibo Lin1

1CS Department, Peking University

2ECE Department, University of Utah

Outline

 Introduction

– Static timing analysis (STA)

– Previous work on STA acceleration

 Problem formulation and our proposed algorithms

– RC delay computation

– Levelization

– Timing propagation

 Experimental result

 Conclusion

2

Static Timing Analysis: Basic Concepts

 Correct functionality

 Performance

Image source:

https://www.synopsys.com/glossary/what-is-static-timing-analysis.html

https://vlsiuniverse.blogspot.com/2016/12/setup-time-vs-hold-time.html

https://sites.google.com/site/taucontest2015/

3

Static Timing Analysis: Basic Concepts

 Correct functionality and performance

 Simplified delay models

– Cell delay: non-linear delay model (NLDM)

– Net delay: Elmore delay model (Parasitic RC Tree)

Image source:

https://www.synopsys.com/glossary/what-is-static-timing-analysis.html

https://vlsiuniverse.blogspot.com/2016/12/setup-time-vs-hold-time.html

https://sites.google.com/site/taucontest2015/

4

Static Timing Analysis: Call For Acceleration

 Time-consuming for million/billion-size VLSI designs

 Need to be called many times to guide optimization

– Timing-driven placement, timing-driven routing etc.

Image source: ePlace [Lu, TODAES’15], Dr. CU [Chen, TCAD’20]

5

Prior Works and Challenges

 Parallelization on CPU by multithreading

– [Huang, ICCAD’15] [Lee, ASP-DAC’18]...

– cannot scale beyond 8-16 threads

 Statistical STA acceleration using GPU

– [Gulati, ASPDAC’09] [Cong, FPGA’10]...

– Less challenging than conventional STA

Image source:

[Huang, TCAD’20]

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#introduction

6

Prior Works and Challenges

 Accelerate STA using modern GPU

– Lookup table query and timing propagation [Wang,
ICPP’14] [Murray, FPT’18]

– 6.2x kernel time speed-up, but 0.9x of entire time
because of data copying

 Leveraging GPU is challenging

– Graph-oriented: diverse computational patterns and
irregular memory access

– Data copy overhead

Image source:

[Huang, TCAD’20]

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#introduction

7

Fully GPU-Accelerated STA

 Efficient GPU algorithms

– Covers the runtime bottlenecks

 Implementation based on open source STA
engine OpenTimer

https://github.com/OpenTimer/OpenTimer

8

https://github.com/OpenTimer/OpenTimer

RC Delay Computation

 The Elmore delay model explained.

 𝑙𝑜𝑎𝑑𝑢 = σ𝑣 is child of 𝑢 𝑐𝑎𝑝𝑣
– eg. 𝑙𝑜𝑎𝑑𝐴 = 𝑐𝑎𝑝𝐴 + 𝑐𝑎𝑝𝐵 + 𝑐𝑎𝑝𝐶 + 𝑐𝑎𝑝𝐷 = 𝑐𝑎𝑝𝐴 + 𝑙𝑜𝑎𝑑𝐵 + 𝑙𝑜𝑎𝑑𝐷

 𝑑𝑒𝑙𝑎𝑦𝑢 = σ𝑣 is any node 𝑐𝑎𝑝𝑣 × 𝑅𝑍→𝐿𝐶𝐴 𝑢,𝑣

– eg. 𝑑𝑒𝑙𝑎𝑦𝐵 = 𝑐𝑎𝑝𝐴𝑅𝑍→𝐴 + 𝑐𝑎𝑝𝐷𝑅𝑍→𝐴 + 𝑐𝑎𝑝𝐵𝑅𝑍→𝐵 + 𝑐𝑎𝑝𝐶𝑅𝑍→𝐵 = 𝑑𝑒𝑙𝑎𝑦𝐴 + 𝑅𝐴→𝐵𝑙𝑜𝑎𝑑𝐵

9

RC Delay Computation

 The Elmore delay model explained.

 𝑙𝑑𝑒𝑙𝑎𝑦𝑢 = σ𝑣 is child of 𝑢 𝑐𝑎𝑝𝑣 × 𝑑𝑒𝑙𝑎𝑦𝑣

 𝛽𝑣 = σ𝑣 is any node 𝑐𝑎𝑝𝑣 × 𝑑𝑒𝑙𝑎𝑦𝑣 × 𝑅𝑍→𝐿𝐶𝐴 𝑢,𝑣

10

RC Delay Computation

 Flatten the RC trees by parallel BFS and counting sort on GPU.

 Store only parent index of each node on GPU

 Redesign the dynamic programming on trees

11

RC Delay Computation

 Store only parent index of each node on GPU

 Redesign the dynamic programming on trees

DFS_load(u):

load[u] = cap[u]

For child v of u:

DFS_load(v)

load[u] += load[v]

GPU_load:

For u in [C, D, B, E, A]:

load[u] += cap[u]

load[u.parent] += load[u]

12

RC Delay Computation

 Store only parent index of each node on GPU, and re-implement the dynamic
programming on trees, based on the direction of value update.

DFS_delay(u):

For child v of u:

temp := R[u,v]*load[v]

delay[v] = delay[u] + temp

DFS_delay(v)

GPU_delay:

For u in [A, E, B, D, C]:

temp := R[u.parent,u]*load[u]

delay[u]=delay[u.parent] + temp

13

RC Delay Memory Coalesce

 Global memory read/write introduces delay. GPU will automatically coalesce adjacent
memory requests.

Image source: https://docs.nvidia.com/cuda/cuda-c-

programming-guide/index.html#memory-hierarchy

14

Task Graph Levelization

 Build level-by-level dependencies for timing propagation tasks.

– Essentially a parallel topological sorting.

 Maintain a set of nodes called frontiers, and update the set using “advance” operation.

15

Task Graph Levelization: Reverse Technique

Benchmark #nodes Max In-degree Max Out-degree

netcard 3999174 8 260

vga_lcd 397809 12 329

wb_dma 13125 12 95

16

GPU Look-up Table Query

 Do linear interpolation/extrapolation and eliminate unnecessary branches

– Unified inter-/extrapolation

– Degenerated LUTs

17

Experiment Setup

 Nvidia CUDA, RTX 2080, 40 Intel Xeon Gold 6138 CPU cores

 RC Tree Flattening

– 64 threads per block with one block for each net

 Elmore delay computation

– 4 threads for each net (one for each Early/Late and Rise/Fall condition) with a block of 64 nets

 Levelization

– 128 threads per block

 Timing propagation

– 4 threads for each arc, with a block of 32 arcs

18

Experimental Results

 Up to 3.69× speed-up (including data copy)

 Bigger performance margin with bigger problem size

19

Experimental Results

 Up to 3.69× speed-up (including data copy)

 Bigger performance margin with bigger problem size

20

Experimental Results (Incremental Timing)

 Break-even point

– 45K nets and gates

– 67K propagation candidates

 useful for timing driven optimization

 Mixed strategy

21

Conclusions and Future Work

 Conclusions:

– GPU-accelerated STA that go beyond the scalability of existing methods

– GPU-efficient data structures and algorithms for delay computation, levelization and timing
propagation

– Up to 3.69x speedup

 Future Work

– Explore different cell/net delay models.

– Develop efficient GPU algorithms for CPPR

22

Thanks!

Questions are welcome

Website: https://guozz.cn

Email: gzz@pku.edu.cn

