
GPU-Accelerated 
Static Timing Analysis

Zizheng Guo1, Tsung-Wei Huang2, Yibo Lin1

1CS Department, Peking University

2ECE Department, University of Utah



Outline

 Introduction

– Static timing analysis (STA)

– Previous work on STA acceleration

 Problem formulation and our proposed algorithms

– RC delay computation

– Levelization

– Timing propagation

 Experimental result

 Conclusion

2



Static Timing Analysis: Basic Concepts

 Correct functionality

 Performance

Image source:

https://www.synopsys.com/glossary/what-is-static-timing-analysis.html

https://vlsiuniverse.blogspot.com/2016/12/setup-time-vs-hold-time.html 

https://sites.google.com/site/taucontest2015/

3



Static Timing Analysis: Basic Concepts

 Correct functionality and performance

 Simplified delay models

– Cell delay: non-linear delay model (NLDM)

– Net delay: Elmore delay model (Parasitic RC Tree)

Image source:

https://www.synopsys.com/glossary/what-is-static-timing-analysis.html

https://vlsiuniverse.blogspot.com/2016/12/setup-time-vs-hold-time.html 

https://sites.google.com/site/taucontest2015/

4



Static Timing Analysis: Call For Acceleration

 Time-consuming for million/billion-size VLSI designs 

 Need to be called many times to guide optimization

– Timing-driven placement, timing-driven routing etc.

Image source: ePlace [Lu, TODAES’15],  Dr. CU [Chen, TCAD’20]

5



Prior Works and Challenges

 Parallelization on CPU by multithreading 

– [Huang, ICCAD’15] [Lee, ASP-DAC’18]...

– cannot scale beyond 8-16 threads

 Statistical STA acceleration using GPU

– [Gulati, ASPDAC’09] [Cong, FPGA’10]...

– Less challenging than conventional STA

Image source:

[Huang, TCAD’20]

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#introduction

6



Prior Works and Challenges

 Accelerate STA using modern GPU

– Lookup table query and timing propagation [Wang, 
ICPP’14] [Murray, FPT’18]

– 6.2x kernel time speed-up, but 0.9x of entire time 
because of data copying

 Leveraging GPU is challenging

– Graph-oriented: diverse computational patterns and 
irregular memory access

– Data copy overhead

Image source:

[Huang, TCAD’20]

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#introduction

7



Fully GPU-Accelerated STA

 Efficient GPU algorithms

– Covers the runtime bottlenecks

 Implementation based on open source STA
engine OpenTimer

https://github.com/OpenTimer/OpenTimer

8

https://github.com/OpenTimer/OpenTimer


RC Delay Computation

 The Elmore delay model explained.

 𝑙𝑜𝑎𝑑𝑢 = σ𝑣 is child of 𝑢 𝑐𝑎𝑝𝑣
– eg. 𝑙𝑜𝑎𝑑𝐴 = 𝑐𝑎𝑝𝐴 + 𝑐𝑎𝑝𝐵 + 𝑐𝑎𝑝𝐶 + 𝑐𝑎𝑝𝐷 = 𝑐𝑎𝑝𝐴 + 𝑙𝑜𝑎𝑑𝐵 + 𝑙𝑜𝑎𝑑𝐷

 𝑑𝑒𝑙𝑎𝑦𝑢 = σ𝑣 is any node 𝑐𝑎𝑝𝑣 × 𝑅𝑍→𝐿𝐶𝐴 𝑢,𝑣

– eg. 𝑑𝑒𝑙𝑎𝑦𝐵 = 𝑐𝑎𝑝𝐴𝑅𝑍→𝐴 + 𝑐𝑎𝑝𝐷𝑅𝑍→𝐴 + 𝑐𝑎𝑝𝐵𝑅𝑍→𝐵 + 𝑐𝑎𝑝𝐶𝑅𝑍→𝐵 = 𝑑𝑒𝑙𝑎𝑦𝐴 + 𝑅𝐴→𝐵𝑙𝑜𝑎𝑑𝐵

9



RC Delay Computation

 The Elmore delay model explained.

 𝑙𝑑𝑒𝑙𝑎𝑦𝑢 = σ𝑣 is child of 𝑢 𝑐𝑎𝑝𝑣 × 𝑑𝑒𝑙𝑎𝑦𝑣

 𝛽𝑣 = σ𝑣 is any node 𝑐𝑎𝑝𝑣 × 𝑑𝑒𝑙𝑎𝑦𝑣 × 𝑅𝑍→𝐿𝐶𝐴 𝑢,𝑣

10



RC Delay Computation

 Flatten the RC trees by parallel BFS and counting sort on GPU.

 Store only parent index of each node on GPU

 Redesign the dynamic programming on trees

11



RC Delay Computation

 Store only parent index of each node on GPU

 Redesign the dynamic programming on trees

DFS_load(u):

load[u] = cap[u]

For child v of u: 

DFS_load(v)

load[u] += load[v]

GPU_load:

For u in [C, D, B, E, A]:

load[u] += cap[u]

load[u.parent] += load[u]

12



RC Delay Computation

 Store only parent index of each node on GPU, and re-implement the dynamic 
programming on trees, based on the direction of value update.

DFS_delay(u):

For child v of u: 

temp := R[u,v]*load[v]

delay[v] = delay[u] + temp

DFS_delay(v)

GPU_delay:

For u in [A, E, B, D, C]:

temp := R[u.parent,u]*load[u]

delay[u]=delay[u.parent] + temp

13



RC Delay Memory Coalesce

 Global memory read/write introduces delay. GPU will automatically coalesce adjacent 
memory requests.

Image source: https://docs.nvidia.com/cuda/cuda-c-

programming-guide/index.html#memory-hierarchy

14



Task Graph Levelization

 Build level-by-level dependencies for timing propagation tasks.

– Essentially a parallel topological sorting.

 Maintain a set of nodes called frontiers, and update the set using “advance” operation.

15



Task Graph Levelization: Reverse Technique

Benchmark #nodes Max In-degree Max Out-degree

netcard 3999174 8 260

vga_lcd 397809 12 329

wb_dma 13125 12 95

16



GPU Look-up Table Query

 Do linear interpolation/extrapolation and eliminate unnecessary branches

– Unified inter-/extrapolation

– Degenerated LUTs

17



Experiment Setup

 Nvidia CUDA, RTX 2080, 40 Intel Xeon Gold 6138 CPU cores

 RC Tree Flattening

– 64 threads per block with one block for each net

 Elmore delay computation

– 4 threads for each net (one for each Early/Late and Rise/Fall condition) with a block of 64 nets

 Levelization

– 128 threads per block

 Timing propagation

– 4 threads for each arc, with a block of 32 arcs

18



Experimental Results

 Up to 3.69× speed-up (including data copy)

 Bigger performance margin with bigger problem size

19



Experimental Results

 Up to 3.69× speed-up (including data copy)

 Bigger performance margin with bigger problem size

20



Experimental Results (Incremental Timing)

 Break-even point

– 45K nets and gates

– 67K propagation candidates

 useful for timing driven optimization

 Mixed strategy

21



Conclusions and Future Work

 Conclusions:

– GPU-accelerated STA that go beyond the scalability of existing methods

– GPU-efficient data structures and algorithms for delay computation, levelization and timing 
propagation

– Up to 3.69x speedup

 Future Work

– Explore different cell/net delay models.

– Develop efficient GPU algorithms for CPPR

22



Thanks!

Questions are welcome

Website: https://guozz.cn

Email: gzz@pku.edu.cn


