~eEEEEEAEE.
llllllllllllllll

ZIN z agismmmmmRmR. ‘
;]B }?- J" % U {JHIE\IIVE RSITY [RARAEFESEEXNTESNAOIL

y PEKING U RSITY O F UTAH ® !!EIIIEHIEIHE:;:' r enter for Energy-efficient Computing and Applications

O Al

=

GPU-Accelerated
Static Timing Analysis

1CS Department, Peking University

2ECE Department, University of Utah

Outline

® |ntroduction
— Static timing analysis (STA)

— Previous work on STA acceleration

= Problem formulation and our proposed algorithms
— RC delay computation
— Levelization

— Timing propagation
= Experimental result

® Conclusion

Static Timing Analysis: Basic Concepts

= Correct functionality

®» Performance

Timing paths
Path 1 Path 2
A D¢ Logic *—Ip .- ‘q}—¢ Logic "—D
-~ : r>'l ’
— : :
[CLK> ; :
Logic

Image source:
https://www.synopsys.com/glossary/what-is-static-timing-analysis.htm| Path
https://vlsiuniverse.blogspot.com/2016/12/setup-time-vs-hold-time.html
https://sites.google.com/site/taucontest2015/

Static Timing Analysis: Basic Concepts

= Correct functionality and performance

= Simplified delay models
— Cell delay: non-linear delay model (NLDM)

— Net delay: EImore delay model (Parasitic RC Tree)

Hold

Setup time

time €

>
Clock active
Clock \ edge
Data can Data can
toggle in this toggle in this
region region

Setup hold
<€ >
Image source: °

https://www.synopsys.com/glossary/what-is-static-timing-analysis.html
https://vlsiuniverse.blogspot.com/2016/12/setup-time-vs-hold-time.html
https://sites.google.com/site/taucontest2015/

Static Timing Analysis: Call For Acceleration

® Time-consuming for million/billion-size VLS| designs

= Need to be called many times to guide optimization

— Timing-driven placement, timing-driven routing etc.

!

Image source: ePlace [Lu, TODAES’15], Dr. CU [Chen, TCAD’20]

netcard (1.5M gates)

Prior Works and Challenges e opertimer 2 ||
o —=— OpenTimer v1 |

= Parallelization on CPU by multithreading ‘é al |

— [Huang, ICCAD’15] [Lee, ASP-DAC’18]... g | -

— cannot scale beyond 8-16 threads § ol i

= Statistical STA acceleration using GPU s | | | |

— [Gulati, ASPDAC’09] [Cong, FPGA’10]...

— Less challenging than conventional STA

L1 Cache

L1 Cache

(=] (=]
= =
m]

L2 Cache

L3 Cache
L2 Cache

DRAM

Image source:
[Huang, TCAD’20] CcPU
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#introduction

netcard (1.5M gates)

Prior Works and Challenges e e
_ ol —a— OpenTimer vl |
= Accelerate STA using modern GPU ‘é Al |
=
— Lookup table query and timing propagation [Wang, é’ Ll |
ICPP’14] [Murray, FPT’18] z
=
— 6.2x kernel time speed-up, but 0.9x of entire time oy |
because of data copying 3| | i

number of cores

® | everaging GPU is challenging

— Graph-oriented: diverse computational patterns and
irregular memory access

Core Core

L1 Cache

L1 Cache

— Data copy overhead

Core Core

L1 Cache

L1 Cache

L2 Cache L2 Cache

L3 Cache

L2 Cache

DRAM

Image source:
[Huang, TCAD’20] CcPU
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#introduction

" Fully GPU-Accelerated STA

= Efficient GPU algorithms

— Covers the runtime bottlenecks

= |mplementation based on open source STA A

engine OpenTimer

Copy Edge Copy Look-up Copy Timing
List to GPU Tablesto GPU Arcs to GPU
100 | |
OpenTimer with 40 CPU cores °CT
80 - leon2: 1.6M gates | . Levelization
Flattening
D Forward
< 60 . P i
0 ropagation Levelization
g RC Delay
é 40 - B Computation
Prepare Backward
20 L | RC Delay Propagation
Computation o
Prop Timing
Propagation

RC Delay Timing Propagation

https://github.com/OpenTimer/OpenTimer CPU Tasks

https://github.com/OpenTimer/OpenTimer

RC Delay Computation N

= The Elmore delay model explained.

C. ——=—@-I
E
= load, = X, is child of u CaPv

—eg. loady = capy + capg + cap. + capp = capy + loadg + load

= delay, = Zv is any node ¢@Py X RZ—>LCA(u,v)

—eg.delayg = capyR;_4 + cappR;_,4 + capgR,;_ 5 + capcR,_p = delay, + R4_gloadp

» ®
o P,

(a) Upward (b) Downward

RC Delay Computation

= The Elmore delay model explained.

- ldelayu — Zv is child of u €¢4Pv X dela}’v

- :Bv — Zv is any node cap, X dela}/v X RZ—>LCA(u,v)

(a) Upward (b) Downward

RC Delay Computation

= Flatten the RC trees by parallel BFS and counting sort on GPU.
= Store only parent index of each node on GPU

= Redesign the dynamic programming on trees

o [[[[

Parent list representation in memory
8]

RC Delay Computation

= Store only parent index of each node on GPU

= Redesign the dynamic programming on trees

DFS load(u):
load[u] = caplu]
For child v of u:

P DFS_load(v) 5

B D C load[u] += load]v] ; Q

GPU _load:
® (a] [A] For u in [C,_D,B,E,A]: () Upward
load[u] += cap|u]
load[u.parent] += load[u]

Parent list representation in memory

RC Delay Computation

= Store only parent index of each node on GPU, and re-implement the dynamic
programming on trees, based on the direction of value update.

DFS_delay(u):
For child v of u:
temp := R[u,v]*load|v]

A delay[v] = delay[u] + temp ,9)

8 D C DFS _delay(v) o

GPU_delay:

(a] [A] Foruin[A, E, B, D, CJ: (b) Downward
temp := R[u.parent,u]*load[u]

delay[u]=delay[u.parent] + temp

Parent list representation in memory
®

RC Delay Memory Coalesce

® Global memory read/write introduces delay. GPU will automatically coalesce adjacent
memory requests.
Grd O

Blode (0, @) Block (1, 0) Block (2. 0)

SRR S

Blodk (0, 1) || Block (1, 1) || Block (2 1)

Early, Rise Early, Fall Late, Rise Late, Fall
Grid 1 Global memory
Block (0, 0) Block (1 0)
(a)
Block (0, 1) Block (1 1)
e ——
V\% I 4
Block (0, 2) Block (1 2)

i e
(b)

Image source: https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html#memory-hierarchy

Task Graph Levelization

= Build level-by-level dependencies for timing propagation tasks.

— Essentially a parallel topological sorting.

= Maintain a set of nodes called frontiers, and update the set using “advance” operation.

Parallel Parallel Parallel Parallel Parallel Parallel

Forward propagation for arrival time

Kernel Kernel Kernel Kernel Kernel Kernel
m
30ns/35ns P12 |
N \ N
| b |
EN ER\
B B e
EEl KB K&
| f
| B : B : B\\ = |
HE Bl EE
Il Bl BE e
HE K BN
< | PO1 |
PO2

Backward propagation for required arrival time

Task Graph Levelization: Reverse Technique

Pl

P12

PI3

Forward propagation for arrival time

30ns/35ns
d

10ns

15ns L
C >e£

f
g
=

h

<

>

PO1

20nsP5ns

PO2

Backward propagation for required arrival time

Forward propagation for arrival time

30ns/35ns

-

Backward propagation for required arrival time

3999174
397809
13125

260
12 329
12 95

GPU Look-up Table Query

® Do linear interpolation/extrapolation and eliminate unnecessary branches
— Unified inter-/extrapolation

— Degenerated LUTs

® nodes W queries S1 segments

Experiment Setup

= Nvidia CUDA, RTX 2080, 40 Intel Xeon Gold 6138 CPU cores

= RC Tree Flattening

— 64 threads per block with one block for each net

= Flmore delay computation

— 4 threads for each net (one for each Early/Late and Rise/Fall condition) with a block of 64 nets

® | evelization
— 128 threads per block

® Timing propagation

— 4 threads for each arc, with a block of 32 arcs

Experimental Results

= Up to 3.69% speed-up (including data copy)

= Bigger performance margin with bigger problem size

OpenTimer Ours

=~

41 ms

m Update RC Timing m Build Prop Tasks ®m Update RC Timing M Levelization

B Update Graph Timing B Update Graph Timing

Fig. 9: Runtime breakdown of the circuit leon2 (21M nodes).

Experimental Results

= Up to 3.69% speed-up (including data copy)

= Bigger performance margin with bigger problem size

leon2 (22.6M nodes) netcard (21.1M nodes)
TT T T T T T TT T T T T T
L —e— Ours (1 GPU) on ™ —e— Ours (1 GPU) | |
20 L I‘. —=— OpenTimer | | .‘ —=— OpenTimer
. ‘. 15| ". —
Z 15 | 1z ;
U .\ 0 -
g \‘\ - g \- u
E \ _— —m S 0L e e
Z 10+ 1 2 10 i |
51 51]
° - o ° —o—— o
NI | \ | | | \
124 8 16 32 40 - . 16 32 40
Number of CPUs Number of CPUs

Fig. 11: Runtime values at different numbers of CPUs. Our runtime
under 1 CPU and 1 GPU is close to OpenTimer of 40 CPUs.

Experimental Results (Incremental Timing)

= Break-even point

— 45K nets and gates

— 67K propagation candidates

» yseful for timing driven optimization

= Mixed strategy

Runtime (s)

Runtime vs Net Count

—a— Ours (1 GPU 40 CPUs)
—— OpenTimer (40 CPUs)

0 0.5 1
Number of Nets

108

Runtime (ms)

1,000

200

GO0

400

200

Runtime vs Gate Count

—e— Ours (1 GPU 40 CPUs)
| —8— OpenTimer (40 CPUs) // 7
a L
1 1 1 1
0 0.5 1 1.5
MNumber of Gates 0P

Runtime ()

10

Runtime vs Problem Size

| | —e— Ours (1 GPU 40 CPUs)
—=— OpenTimer (40 CPUs) ./_/

Propagation Candidates

Conclusions and Future Work

= Conclusions:
— GPU-accelerated STA that go beyond the scalability of existing methods

— GPU-efficient data structures and algorithms for delay computation, levelization and timing
propagation

— Up to 3.69x speedup

=® Fyuture Work

— Explore different cell/net delay models.

— Develop efficient GPU algorithms for CPPR

lllllllllll
llllllllllllllll

TR > THE Pr Y
e # 5. %} U UNIVERSITY guipia
23s/ PEKING UNIVERSITY OF UTAH® - R

llllllllllllllll

Thanks!
Questions are welcome

Website: https://guozz.cn
Email: gzz@pku.edu.cn

