
GPU-Accelerated Static Timing Analysis
Zizheng Guo

CECA, CS Department
Peking University
gzz@pku.edu.cn

Tsung-Wei Huang
ECE Department
University of Utah

tsung-wei.huang@utah.edu

Yibo Lin∗
CECA, CS Department
Peking University
yibolin@pku.edu.cn

ABSTRACT
The ever-increasing power of graphics processing units (GPUs) has
opened new opportunities for accelerating static timing analysis (STA)
to a new milestone. Developing a CPU-GPU parallel STA engine is an
extremely challenging job. We need to consider the unique problem
characteristics of STA and distinct performance models between CPU
and GPU, both of which require very strategic decomposition to benefit
from heterogeneous parallelism. In this paper, we propose an efficient
implementation for accelerating STA on a GPU.We leverage task-based
approaches to decompose the STA workload into CPU-GPU dependent
tasks where kernel computation and data processing overlap effec-
tively. We develop GPU-efficient data structures and high-performance
kernels to speed up various tasks of STA including levelization, delay
calculation, and graph update. Our acceleration framework is flexible
and adaptive. When tasks are scarce such as incremental timing, we
run the normal CPU mode, and we enable GPU when tasks are mas-
sive. We have implemented our algorithms on top of OpenTimer and
demonstrated promising performance speed-up on large designs. As
an example, we achieved up to 3.69× speed-up on a large design of
1.6M gates and 1.6M nets using one GPU.

1 INTRODUCTION
As design complexities continue to grow larger, the need to efficiently
analyze circuit timing with billions of transistors is quickly becoming
the major bottleneck to the overall chip design closure process. During
the timing closure, static timing analysis (STA) is frequently called in an
inner loop of an optimization algorithm to iteratively and incrementally
improve the timing of the design [1]. Optimization engines apply
millions of design transforms to modify the design and the timer has to
quickly and accurately update the timing to ensure slack integrity [2].
Such a process can be very time-consuming for modern very large-
scale integration (VLSI) designs that incorporate billions of transistors
across thousands of analysis scenarios. The efficiency of a STA engine
is crucial for reasonable turnaround time and performance.

Previous work in academic research and commercial tool develop-
ment has proposed various parallel STA algorithms [3–12]. Each of
these algorithms has their own pros and cons, but nearly all of them
are architecturally constrained by the multithreaded paradigm on a
manycore central processing units (CPUs) platform. While results of
some of those efforts have shown scalability, most are not scaling be-
yond 8–16 threads [12], and many of them have not been replaced with
more scalable equivalents at all. With the increasing power of modern

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415631

graphics processing units (GPUs), there exist new opportunities for
accelerating STA to a different milestone. However, developing a high-
performance STA algorithm that harnesses the power of CPU-GPU
collaborative computing is an extremely challenging job. Computing a
timing graph involves irregular memory access and significant diverse
computational patterns, including graph-oriented computing, dynamic
data structures, branch-and-bound, and recursion [4]. The resulting
task graph in terms of encapsulated function calls and functional de-
pendencies is vast and complex. Data can arrive sparsely or densely
at different iterations of incremental timing. We need very strategic
decomposition algorithms and data structure models to benefit from
hybrid CPU-GPU computing and GPU parallelism.

As a consequence, we introduce this paper a new implementation
of STA on a hybrid CPU-GPU platform. We develop GPU-efficient
data structures and acceleration kernels to offload critical parts of
STA computing to GPU. We have implemented our algorithms on
OpenTimer, an open-source STA engine developed by Huang et al [4].
The core design philosophy of our algorithm is generally applicable
and can be implemented for other STA frameworks. We summarize
three major contributions of this work as follows:

• We leverage task parallelism to decompose the STA workload
into CPU-GPU dependent tasks and enable efficient overlap
between data processing and kernel computation.
• We develop GPU-efficient data structures and algorithms for
delay computation, levelization, and timing propagation tasks,
all of which are essential to update a STA graph.
• We develop our GPU acceleration algorithms on top of a real-
world STA engine that supports incremental timing on industrial
design formats. Our techniques reflect realistic performance
tradeoff between CPU and GPU.

We have evaluated our algorithm on industrial designs released by
TAU 2015 Timing Analysis Contest [2]. As an example, we accelerate
OpenTimer by 3.69× and 3.60× on two large designs, leon2 (23M nodes
and 25M edges) and netcard (21M nodes and 23M edges), using a single
GPU. In the extreme, our implementation using one GPU can run
faster than OpenTimer of 40 CPUs. We have also studied the effect of
different factors, including problem size, net count, and gate number
on the performance of incremental timing and provide guidance for
when to use GPU and CPU. We believe our algorithm stands out as a
unique acceleration paradigm given the ensemble of software tradeoffs
and architecture decisions we have made.

The rest of this paper is organized as follows. Section 2 introduces
the background of STA, GPU architecture, and formulates the problem.
Section 3 presents details of our GPU-based STA algorithm. Section
4 demonstrated the experimental results of our algorithm. Finally,
Section 5 concludes the paper.

2 STATIC TIMING ANALYSIS
In STA, a circuit is modeled as a directed acyclic graph (DAG), where
each node represents a pin of a component and an edge represents a
pin-to-pin connection. Figure 1 gives an example of a STA graph. The
graph consists of three primary inputs, two primary outputs, and four

https://doi.org/10.1145/3400302.3415631

logic cells (1 AND gate, 1 NOT gate, and two OR gates), as well as con-
nections (net) among components. Graph-based STA typically contains
of two major phases, forward propagation and backward propagation,
to accommodate data dependency while computing the earliest and
the latest delay values at each node. Forward propagation computes
quantities such as RC, slew, delay, and arrival time (AT). Backward
propagation computes the values that are dependent on forward prop-
agation, for example, required arrival time (RAT). Depending on the
technology node, different delay calculators may apply.We focus on the
models in the recent TAU 2014–2019 contests [2, 13, 14]. The contest
benchmarks and verification scripts provide the context for experi-
menting new STA methods under rigorous definition of both input
and output. To limit the scope of discussion, we adopt the widely used
Elmore delay model [2] for net delays, and the nonlinear delay model
(NLDM) for cell delays that are interpreted through 2D look-up tables
(LUT) indexed by input slew and output capacitance. The criticality of
a node is measured by its slack value, which is the difference between
AT and RAT. The early and the late slacks are referred to as hold check
and setup check, respectively.

PI1

PI2

PI3

PO1

PO2

Forward propagation for arrival time

Backward propagation for required arrival time

30ns/35ns

20ns/25ns
10ns
15ns

a
b

c

d

e

i

f
g

h

j

k

Figure 1: Static timing analysis graph of a circuit design. Each
node (marked in blue) represents a pin in a component and
each edge (marked in arrow) represents a pin-to-pin connec-
tion. Each delay is quantified by one min value and one max
value to denote the best and worst cases.

2.1 Parallel Static Timing Analysis Engines
The ever-increasing design complexity of modern VLSI systems has
put increasing strain on the efficiency of STA engines needed to an-
alyze large designs. Computing a STA graph can involve millions or
even billions of nodes and edges. The resulting task graph in terms of
encapsulated function calls and data dependency is extremely vast and
complex [6]. To alleviate the long runtime, recent work has explored
parallel and distributed frameworks to speed up STA [3, 4, 7, 8]. For
example, Huang et al develop a timing analysis engine, OpenTimer, us-
ing a task dependency graph to represent timing propagation tasks and
their precedence [4, 6, 7]. The result has shown up to 2× improvement
in runtime over loop-based OpenMP. Murray et al explore parallel
timing propagation for FPGA designs and demonstrate 9× speedup
with 32 CPU cores. Besides, recent TAU contests [2, 13, 14] have also
raised new challenges on incremental timing, common path pessimism
removal [9–11], and timing macro-modeling [15, 16].

Due to the threading overhead and irregular computational patterns
of STA, performance of CPU-based multi-threading usually saturates at
around 8–16 threads [4, 8]. To break the performance bottleneck, GPU
acceleration for timing analysis is further explored [8, 17]. Wang et al
[17] proposed acceleration techniques for the look-up table interpola-
tion when computing the cell delays during the timing propagation,

while the other steps like net delay and levelization are still on CPU.
They demonstrated more than 10× speedup on the kernel propagation
time over their CPU implementation. The aforementioned work from
Murray et al [8] on FPGA designs also investigated GPU accelerated
timing propagation. While they demonstrated 6.2× speedup on ker-
nel computation time, the entire propagation runtime becomes 0.9×
slower than CPU due to the data transfer overhead. In addition, there
have been also attempts to accelerate Monte Carlo-based statistical
STA (SSTA) algorithms with GPU and FPGA [18–20].

RC Delay Timing Propagation
0

20

40

60

80

100

leon2: 1.6M gates
OpenTimer with 40 CPU cores

Prepare

Prop

Delay
42

10

48

Ru
nt
im

e
(%
)

Figure 2: Runtime breakdown for OpenTimer to complete one
round of full timing on a million-gate circuit using 40 CPUs.

In order to understand the runtime of each part in a STA algo-
rithm, we have profiled the widely-used open-source STA engine,
OpenTimer [4, 6]), and drawn the runtime breakdown of graph-based
analysis in Figure 2. We observe a significant portion (48%) taken by
RC timing, including constructing RC trees and updating parameters
for computing slew and delay across nets. Updating RC timing has
been always the major bottleneck in analyzing large designs due to
large SPEF data we need to process [2]. Another large chunk (42%)
goes to the construction of the task dependency graph to carry out the
timing propagation. Since OpenTimer models each pin as a task, the
resulting task graph is linearly proportionally to the size of the STA
graph. Constructing a large task graph requires additional layer of data
structure to represent tasks and dependencies. Also, only one thread
can touch this process at a time, which becomes very time-consuming
for large designs.

2.2 GPU Architecture
Heterogeneous computing systems with different compute resources
are becoming popular nowadays. In general, CPUs are adopted as
the host to manage and schedule all the computation tasks due to its
general purpose and powerful control blocks. Data-intensive compu-
tational tasks are offloaded to GPUs for acceleration. Unlike a CPU,
which has a few large “cores” with high performance, a GPU consists of
streaming multiprocessors which contain thousands of less powerful
small “cores”. It tries to achieve high throughput with massive paral-
lelization at low threading overhead. Therefore, a GPU is promising for
plenty of small and simple tasks which may not afford the threading
overhead on a CPU.

2.3 Challenges of GPU-Accelerated STA
The performance characteristics of GPU have the potential to accelerate
both delay computation and timing propagation in STA. For example,
computing the RC timing of each net is independent of each other
as we only need to collect parameters for computing slew and delay
through the generated RC tree [2]. Parasitics data is typically large (gi-
gabytes of SPEF files) and the computation is data-driven. In addition,

2

RC Delay
Computation

Copy Edge
List to GPU

RC Tree
Flattening

RC Delay
Computation

Levelization

Copy Timing
Arcs to GPU

Levelization

Timing
Propagation

Copy Look-up
Tables to GPU

Forward
Propagation

Backward
Propagation

Start

End

CPU Tasks GPU Tasks

Figure 3: Overall taskflow of the GPU-accelerated STA engine.

we may leverage the power of GPU to compute the topological order
of dependent tasks which would otherwise be implemented in a single-
threaded graph traversal [4]. Considering the unique performance
characteristics of GPU, we highlight two challenges for accelerating
these tasks. (1) Frequent memory access: despite the independent RC
delay computation of each net, it requires to access gigabytes memory
to complete the computation on million-gate designs, because each
net corresponds to an RC tree with the parasitics under different con-
ditions (Early/Late, Rise/Fall); (2) Irregular computation patterns: many
STA tasks involve irregular computational patterns, including graph
traversal, dynamic data structures, and recursive procedures. Both
challenges are associated with each other and require very strategic
decomposition algorithms to benefit from GPU parallelism.

3 ALGORITHM
In this section, we explain the details of our GPU acceleration algo-
rithms. The overall task graph in terms of encapsulated functions and
task dependencies is shown in Figure 3, where the arrows indicate
the task dependencies. We leverage the state-of-the-art parallel task
programming system, Cpp-Taskflow [6], to describe CPU-GPU depen-
dent tasks. Our task graph contains three steps: delay computation,
levelization, and timing propagation. Timing propagation consists of
forward propagation and backward propagation. We highlight the GPU-
accelerated steps in dark: RC tree flattening, RC delay computation,
levelization, and forward propagation. We leave backward propagation
on CPU because its workload (i.e., update required arrival time) is
much cheaper than other steps. Our goal is to address the runtime
bottleneck (see Figure 2) through GPU parallelism.

3.1 RC Delay Computation
RC delay computation accounts for the majority of the runtime in most
cases [2]. We first analyze the model and the algorithm for computing
necessary parameters to obtain delay and slew values through a RC
network. We then show how to develop GPU-efficient algorithms and
data structures. We approximate the interconnect delay based on an
Elmore delay model variant [2] that had been implemented by many
STA engines [4, 9, 12]. As shown in Figure 4, the goal is to compute
the delay and impulse between the root (Port) and each output pins
(Taps).

RZ→A

RZ→E

Z

CA

A RA→B

CB

B C

CC

RA→D

RB→C

CDDE
CE

CZ

(a)

Z A E B D C

Z Z A A B

Parent list representation in memory

(b)

Figure 4: The parasitic RC treemodel. (a) A parasitic RC tree, its
node capacitance and edge resistance. (b) The above tree nodes
in their BFS order, as a flattened 1D array representation, and
the list of parent index.

CPU Implementation [4]. A common way to implement the RC
delay computation is dynamic programming (DP). This algorithm con-
sists of four steps:

(1) Compute the load (i.e. the lumped capacitance) of each node u,
denoted as loadu .

loadA =CA +CB +CC +CD
=CA + loadB + loadD .

(1)

(2) Compute the delay between Port and u, denoted as delayu .

delayu =
∑

v ∈nodes

CvRPort→LCA(u ,v), (2)

where LCA denotes lowest common ancestor. 1

delayB =RZ→ACA + RZ→ACD+

(RZ→A + RA→B)CB+

(RZ→A + RA→B)CC

=delayA + RA→B loadB .

(3)

(3) Compute the sum of the product of capacitance and delay in
subtrees of u, denoted as ldelayu , similar to step 1.

(4) Compute the beta and impulse value between Port and u, using
the ldelay of each node, similar to step 2.

A common approach is to compute each parameter through multiple
depth-first search (DFS) traversals of a RC tree. This results in a linear
complexity proportional to the size of the tree, but it may not be
efficient on GPU. Because DFS is not GPU-friendly due to recursive
irregularity. Obtaining orders of traversed nodes and edges in a RC
network require non-trivial memory access patterns through recursion,
which are generally discouraged for GPU programming.

1In equation (2) and (3), We have fixed a mistake in the proceeding version.

3

3.1.1 RC Tree Flattening on GPU. We use breadth-first search (BFS)
rather than DFS. However, this requires a different approach to com-
pute RC parameters. For each net, the DFS-based approach needs to
traverse the same RC tree multiple times for resolving data dependen-
cies between different parameter types (e.g., impulse depends on load
capacitance) under each of the four Early/Late and Rise/Fall combina-
tions [4]. Instead, we precompute a BFS order for each tree. Based on
this order, every parent appears before all its children. If there is an
edge u → v , then u appears before v , as shown in Figure 4. This BFS
order is a GPU-efficient representation of a RC tree. We only need to
traverse the nodes through the ordered sequence, either forward or
backward, according to the direction of the DP step.

Algorithm 1: Flatten RC Trees
Input: N as #nets, (M, E) as (#nodes, #edges) in all nets
Input: roots[0..N − 1], the index of root of each net
Input: edges[0..E − 1], the undirected edges {(a,b)}
Input: nodestart[0..N], the offsets of each net in arrays of

nodes, with nodestart[N] = M
Input: edgestart[0..N], the offsets of each net in arrays of

edges, with edgestart[N] = E
Input: distances[0..M] = ∞, counts[0..M] = 0
Output: order[0..M − 1], nodes in BFS order for each net
/* Process one net w/ blockDim.x threads */

1 netID = blockIdx.x; ▷ gridDim.x = #nets
2 threadID = threadIdx.x; ▷ blockDim.x = 64
3 nst = nodestart[netID]; ▷ node offset start
4 nend = nodestart[netID + 1]; ▷ node offset end
5 est = edgestart[netID]; ▷ edge offset start
6 eend = edgestart[netID + 1]; ▷ edge offset end
7 distances[nst + roots[netID]] = 0;
8 for d = 0, 1, 2, ..., (nend − nst) do
9 for i = est + threadID to eend step blockDim.x do
10 (a,b) = edgelist[i];
11 if distances[a] == d and distances[b] >d + 1 then
12 distances[b] = d + 1;
13 atomicAdd(counts[d], 1);
14 end
15 else if distances[b] == d and distances[a] >d + 1 then
16 distances[a] = d + 1;
17 atomicAdd(counts[d], 1);
18 end
19 end
20 __syncthreads(); ▷ Sync threads within a block
21 break when counts[d] == 0;
22 end
23 countingSort(distances, counts, order, threadID);

Algorithm 1 shows the pseudocode of our RC tree flattening algo-
rithm. While the algorithm works on a batch of nets with each thread
block processing one net, we explain it using the example of a single
net. The algorithm accepts an edge list as an input and computes a
BFS order of nodes. It consists of two steps: (1) compute the distances
of each node to the root; (2) sort nodes according to their distance
to the root. The first step adopts a parallel implementation of O(n2)
runtime complexity, where n is the number of nodes in a net. Since the
number of nodes in a RC tree is usually around a couple hundreds, this
O(n2) sorting algorithm is efficient on GPU. For each net, 64 threads

are launched to process the edge list of the net. We traverse the edge
list multiple times. In each iteration (line 9-19), we reach a batch of
new nodes with the same distance to the root of the tree. Lastly, we
sort the nodes by their distance to the root using the parallel counting
sort algorithm on GPU (line 23) with runtime complexity O(n).

Algorithm 2: Compute RC Delay
Input: N as #nets,M as #nodes in all nets
Input: start[0..N], the offsets of each net in arrays of nodes
Input: parent[0..M − 1], the index of parent of every nodes
Input: pres[0..M − 1], the resistance between nodes and their

parent
Input: cap[0..4M − 1], the capacitance of nodes, each in 4

different combinations
Output: load[0..4M − 1], delay[0..4M − 1], impulse[0..4M − 1]:

arrays of results of load, delay and impulse,
respectively

1 netID = blockIdx.x × blockDim.x + threadIdx.x;
2 condID = threadIdx.y;
3 if netID ≥ N then return;
4 offsetL = start[netID]; ▷ node offset start
5 offsetR = start[netID + 1]; ▷ node offset end
6 Initialize load, delay, ldelay to zero;
7 Initialize β = 0 as an auxiliary array;
8 for i = offsetR − 1 down to offsetL do
9 load[4i + condID] += cap[4i + condID];

10 load[4parent[i] + condID] += load[4i + condID];
11 end
12 for i = offsetL + 1 to offsetR − 1 do
13 t = load[4i + condID] × pres[i];
14 delay[4i + condID] = delay[4parent[i] + condID] + t ;
15 end
16 for i = offsetR − 1 down to offsetL do
17 ldelay[4i + condID] +=

cap[4i + condID] × delay[4i + condID];
18 ldelay[4parent[i] + condID] += load[4i + condID];
19 end
20 for i = offsetL + 1 to offsetR − 1 do
21 t ′ = ldelay[4i + condID] × pres[i];
22 β[4i + condID] = β[4parent[i] + condID] + t ′;
23 impulse[4i + condID] =

2β[4i + condID] − delay[4i + condID]2;
24 end

3.1.2 RC Delay Computation on GPU. Algorithm 2 shows the pseu-
docode for our GPU kernel. We optimize the data structure of RC trees
in GPU memory. We launch the kernel per net under each Early/Late
and Rise/Fall condition. A total of 4N threads are launched, where N
is the number of nets. Initially, the netID and condID is computed in
line 1-3. We compute the offsets of the data for the net in the arrays in
line 4-5 and initialize the output arrays with zeros in line 6-7. Then,
we traverse and update the values of load (line 8-11), delay (line 12-15),
ldelay (line 16-19), beta and impulse (line 20-24).

We store the parent index of each node in array parent, as shown
in Figure 4(b). This provides a workload-balanced parent-child repre-
sentation on GPU, while preserving our ability to perform DP updates.

4

Z

A E

B D

C

(a) Upward

Z

A E

B D

C

(b) Downward

Figure 5: Different directions of DP. In (a), the update of recur-
sive equation goes upward. In other words, the value of a par-
ent depends on the value of its children. In (b), the update goes
downward. In other words, the value of a child depends on its
parent.

1 2 3 1 2 3 1 2 3 1 2 3

Early, Rise Early, Fall Late, Rise Late, Fall

(a)

1 2 31 2 31 2 31 2 3

Early, Rise

(b)

Figure 6: Memory arrangement for Early/Late and Rise/Fall
cases. (a) Independent access; (b) Interleaved access.

For example, the recursive equation for load is

loadu = capu +
∑

v ∈{children of u }
loadv , (4)

as shown in Figure 5(a). This equation is not directly evaluable because
we cannot sum over all children of u without knowing the adjacency
list. To handle this problem, we recognize each loadu as a running
sum. Algorithm 2 updates the running sum of u at each child of u (line
10), progressivly leading to the final result. Because we traverse the
node sequence backward (line 8-11), and every child of u appears after
u, loadu is ready when we encounter u in the sequence. As another
example, the recursive equation for delay is:

delayv = delayu + presv × loadv
where u is the parent of v , as shown in Figure 5(b). Implementation

of this equation becomes straightforward using our parent index array
(line 13-14). Updating ldelay and beta is similar to load and delay,
respectively.

We optimize the global memory access latency when the number
of nets is large and we have to update the RC at different conditions
using different threads. Data stored in GPU’s global memory will incur
some latency when accessed. In practice, GPU will identify threads that
request memory access to adjacent addresses, and coalesce these re-
quests. Thus, we interleave the memory of the four threads performing
independently on each of the four Early/Late and Rise/Fall conditions,
instead of storing them separately (see Figure 6). This ensures mem-
ory requests emitted from the adjacent four threads are adjacent. The
index of node i with condition index condID is 4i + condID (marked in
Algorithm 2).

PO1

PO2

PI1

PI2

f

g

h

i

j

k

PO1

PO2

a

b

c

d

e

PI3

f

g

h

i

j

k

PO1

PO2

d

e

PI3

f

g

h

i

j

k

PO1

PO2

f

g

h

i

j

k

PO1

PO2

j

k

PO1

PO2

a

b

c

d

e

PI3

Time

Parallel
Kernel

Parallel
Kernel

Parallel
Kernel

Parallel
Kernel

Parallel
Kernel

Parallel
Kernel

Figure 7: Levelization of the timing graph in Figure 1 using
GPU. Nodes in bold are frontiers at the corresponding iteration.
At each iteration, we obtain one level of nodes.

3.2 Levelization
Levelization is a preparation step for timing propagation. It builds level-
by-level dependencies for propagation tasks and accounts for nearly
40% of the runtime [4] (see Figure 2). A root cause is its single-threaded
pattern. Existing timers, including industrial tools [12], construct a
level list data structure for all logic levels through a single-threaded
BFS or DFS. Tasks within the same level can run in parallel; Lower-
level tasks must not run after tasks at higher levels. Maintaining such
a data structure is time-consuming. To reduce the runtime, we develop
a GPU-accelerated levelization algorithm.

Algorithm 3: Levelize
Input: the set of nodes nodes
Data: the adjacency list out , the current in-degree in
Output: a level list of nodes

1 F ← { f ∈ nodes : inf = 0};
2 while F is not empty do
3 output F ;
4 F ′ ← {};
5 Call advanceFrontier on F and get F ′;
6 F ← F ′;
7 end

The procedure of our GPU-accelerated levelization is shown as
Algorithm 3. The key idea is to maintain a set of nodes in the present
level, called frontiers, denoted as F . The initial frontiers are nodes that
do not have input edges (line 1). The algorithm loops through line
3-6 until all nodes are discovered. At each iteration, we invoke a GPU
kernel function advanceFrontier to discover the next frontiers in
parallel based on the current ones.

Algorithm 4 shows the pseudocode for advanceFrontier. This
algorithm works on current frontiers and each thread processes one
frontier. We enumerate all output edges of each frontier (line 3-8). For
each output edge with destination v , we decrease the in-degree of v
by one. If the in-degree of v becomes zero afterwards, we add v to the
set of next frontiers.

In this algorithm, we perform edge exploration of different frontiers
simultaneously, while different output edges of one node are explored

5

Algorithm 4: Advance Frontier
Input: the old frontier F
Data: the adjacency list out, in-degree array in
Output: the new frontier F ′

1 nodeID← blockIdx.x × blockDim.x + threadIdx.x;
2 if nodeID ≥ size(F) then return;
3 for v in out[nodeID] do
4 oldvalue← atomicAdd(in[v], -1);
5 if oldvalue = 1 then
6 Add v to F ′;
7 end
8 end
9 return G;

x1 x3x2 x4

nodes queries

q1
q2

s1 s2 s3

s1 segments

Figure 8: Example of 1D lookup table query. This 1D lookup
table is essentially a piecewise linear function with three seg-
ments s1, s2, s3. There are two queriesq1 (that hits s1) andq2 (that
hits s3). We get the result by evaluating the queried x-value on
the specific segment, regardless of interpolation (like q2) or ex-
trapolation (like q1).

sequentially. However, if only a few frontiers have large output degrees
(number of outgoing edges), we may encounter imbalanced workload
among GPU threads. To tackle this problem, we adopt a reverse tech-
nique. The idea is based on the observation that in most circuit designs
the input degree of a node is smaller than its output degree [9]. For
example, in the million-gate design, netcard [2], the maximum input
degree and output degree are 8 and 260, respectively. If we execute
the levelization algorithm on the reversed timing graph (i.e., from out-
put pins to input pins), we can acquire higher parallelism and more
balanced workload during the edge exploration process. After we com-
plete the levelization, the ordinary level orders can be retrieved by
reversing these level orders. Figure 7 illustrates our levelization pro-
cess. Large designs typically have hundreds of levels with enough
parallelism for running thousands of independent tasks within a level.

3.3 Timing Propagation and Look-up Table
According to the runtime breakdown in Figure 2, timing propagation
is fairly CPU-efficient since most LUTs are small, but we still observe
modest improvement by migrating this step to GPU especially for large
designs (e.g., millions of gates). The delay and slew of cell arcs are
determined by the specific type of a cell. In NLDM, dealy and slew are
modeled through a piecewise linear function of the input slew and
the output load of the arc. Sample points are characterized in LUTs.
The timer queries slew and delay through a cell arc using bilinear
interpolation or extrapolation.

Algorithm 5 presents the detail of table lookup on GPU. The 2D bi-
linear interpolation is computed by three 1D linear interpolations (line
18-20). A 1D linear interpolation is to find the y-value of a piecewise
linear function (i.e. a polyline) at a given x-value. We develop a general

Algorithm 5: LUT Interpolation
/* Input: line (x1,y1)--(x2,y2) */

/* Input: the x value queried */

1 Function interpolate(x1, x2,y1,y2, x):
2 if x1 = x2 then return y1;
3 else return d1 + (d2 − d1)

x−x1
x2−x1 ;

4 end
/* Input: n ×m look-up table */

/* Input: the point queried (x,y) */

5 Function lut_lookup(n,m,X ,Y ,mat, x,y):
6 i ′ ← 0;
7 i ← min(1,n − 1);
8 while i + 1 < n and X [i] ≤ x do
9 i ′ ← i;

10 i ← i + 1;
11 end
12 j ′ ← 0;
13 j ← min(1,m − 1);
14 while j + 1 < m and Y [j] ≤ y do
15 j ′ ← j;
16 j ← j + 1;
17 end
18 ri′ ←interpolate(Y [j ′],Y [j],mat[i ′, j ′],mat[i ′, j]);
19 ri ←interpolate(Y [j ′],Y [j],mat[i, j ′],mat[i, j]);
20 r ←interpolate(X [i ′],X [i], ri′, ri);
21 return r ;
22 end

approach to cover both interpolation and extrapolation, as shown in
Figure 8, where we only need to find which segment of linear function
covers the given x-value. In the algorithm, line 6-11 finds such segment
that x lies in as two consecutive indices, i ′ and i . We use two variables
to deal with degeneralized cases of one row (or column), where i ′ = i .
Since LUTs are usually small, the algorithm performs a linear search
on segments for each query, and it is efficient enough on GPU.

4 EXPERIMENTAL RESULTS
We implemented our GPU-accelerated STA algorithm on top of Open-
Timer [4] and evaluated the results using TAU15 contest benchmarks [2].
These benchmarks come with a golden reference generated by IBM
Einstimer under the static mode and provide rigorous environment for
testing and experimenting new STA algorithms. We do not compare
with commercial tools (e.g., PimeTime, OpenSTA) because they do
not support GPU. Also, such a comparison may not be fair because
of different application scopes. We undertook all experiments on a
Ubuntu Linux 5.0.0-21-generic x86 64-bit machine with 40 Intel Xeon
Gold 6138 CPU cores at 2.00 GHz, 1 GeForce RTX 2080 GPU, and 256
GB RAM. We compiled all programs using Nvidia CUDA nvcc 11.0 on
a host compiler of GNU GCC-8.3.0 with C++17 standards -std=c++17
and optimization flags -O2 enabled. In terms of kernel execution con-
figuration, we assigned 64 threads per block with one block for each
net for Algorithm 1, 4 threads for each net (one for each Early/Late
and Rise/Fall condition) with a block of 64 nets for Algorithm 2, and
128 threads per block for Algorithm 3. To overlap kernel execution
with data transfers, we created three CUDA streams, one for launching
kernels and the other two for transferring data between CPU and GPU.

6

We used the state-of-the-art parallel task programming library, Cpp-
Taskflow [6], that had been available in OpenTimer to describe CPU-
GPU dependent tasks and let the library handle task scheduling details.
We measured the runtime directly from the source of update_timing.
This gives us precise performance evaluation in a realistic use case
of STA rather than a selected module that may result in bogus GPU
speed-up numbers (e.g., 100×). All data is an average of ten runs.

4.1 Full Timing
Table 1 lists the benchmark statistics and the overall performance
comparison between our approach and OpenTimer. We measure the
runtime to complete one iteration of full-timing update on 14 bench-
marks, aes_core, vga_lcd, vga_lcd_iccad, b19, cordic, des_perf, edit_dist,
fft, leon2, leon3mp, netcard, mgc_edit_dist, mgc_matrix_mult, and
tip_master. These benchmarks were used as the final hidden testcases
of TAU15 Contest to evaluate contestants’ entries at a large scale. We
do not include other benchmarks of small sizes (fewer than 10K gates)
because their runtime results are very small (10–30 ms). We ran both
OpenTimer and our algorithm using the maximum hardware concur-
rency of 40 CPUs and 1 GPU on our platform. Our runtime is faster
than OpenTimer across all benchmarks. The three largest speed-up
values we observed are 3.69× on leon2 (1.6M gates), 3.60× on netcard
(1.5M gates), and 3.02× on leon3mp (1.2M gates). The speed-up val-
ues become remarkable at large designs when generated STA graphs
contain tens of millions of nodes and edges.

!"#$

!"#$%&'()'*+,+-. /&0&1+2$%+3-

!"#$%&'45$"6'*+,+-.

!"#$ %&

!'() %&

$(*$%&

!%&'()*&#

!"#$%&'()'*+,+-. 78+1#'953"'*$:;:

!"#$%&'45$"6'*+,+-.

#!*+%&

!$+%&

$#"*+%&

Figure 9: Runtime breakdown of the circuit leon2 (21M nodes).

Figure 9 shows the runtime breakdown of OpenTimer and our algo-
rithm for notable items (>40 ms) on the largest circuit, leon2. Open-
Timer spends 4209 ms to construct the task dependency graph for
updating graph timing. Creating a large task dependency graph has
non-negligible overhead because it requires additional data structures
(managed by Cpp-Taskflow) to describe dependent tasks that represent
the entire timing graph. Also, this process is single-threaded. In our
implementation, we use GPU to levelize the graph and run multiple
tasks (e.g., update RC timing) in a single batch. We do not need as many
tasks as OpenTimer but a single kernel to establish the topological
dependency. It takes GPU only 41 ms to accomplish the levelization
using our algorithm. We observe a large amount of runtime reduction
from updating RC timing. It takes 4781 ms for OpenTimer to finish
RC timing whereas we reach the goal by 2.55× faster. Our runtime for
updating the graph timing is a bit faster (845 ms vs 1051 ms), due to
our GPU-based LUT interpolation.

Figure 10 draws the runtime scalability versus increasing numbers
of CPUs on the two largest designs, leon2 and netcard. Each CPU cor-
responds to a user-land thread. Both methods leverage task parallelism
(with Cpp-Taskflow [6]) to describe dependent tasks and update the

12 4 8 16 32 40

5

10

15

20

Number of CPUs

Ru
nt
im

e
(s
)

leon2 (22.6M nodes)

Ours (1 GPU)
OpenTimer

12 4 8 16 32 40

5

10

15

20

Number of CPUs

Ru
nt
im

e
(s
)

netcard (21.1M nodes)

Ours (1 GPU)
OpenTimer

Figure 10: Runtime values at different numbers of CPUs. Our
runtime under 1 CPU and 1 GPU is close to OpenTimer of 40
CPUs.

STA graph in parallel. In our implementation, the benefit includes over-
lapped CPU-GPU tasks especially for data transforms and transfers.
Increasing the number of CPUs can thus also speed up our algorithm.
We observe both methods scale up to 10 CPUs. Performance stagnates
at about 16 CPUs. Regardless of CPU numbers, our runtime is always
faster than OpenTimer, and there exists a remarkable gap. The largest
speed-up occurs at 32 CPUs, where ours is faster than OpenTimer by
4.18× on leon2. Even with a single CPU, our GPU implementation is
able to finish the timing closer to that of OpenTimer using 40 CPUs
(10892 ms vs 11036 ms in leon2 and 10109 ms vs 9227 ms in netcard).
These results clearly demonstrate the strength of our approach.

4.2 Incremental Timing
A key reason our GPU implementation is faster than OpenTimer is the
data size. Before any incremental timing takes place, the STA graph
must experience at least one round of full-timing update, including
cell delay, RC delay, slew, arrival time, required arrival time, and so
on. These tasks accumulate a large amount of data and computation
that can benefit from the use of GPU parallelism. During incremental
timing, computation varies and may scope to a small local region or
the entire timing landscape. Computational efficiency largely depends
on the number of propagation candidates to trigger incremental timing.
In OpenTimer, this is equivalent to the union of fanin and fanout cones
spanned by frontier pins fromwhich incremental timingmust be issued
at a minimum [4]. Considering the distinct performance characteristics
between CPU and GPU, the most effective approach to incremental
timing is a mixed strategy.When the number of propagation candidates
is large, we use GPU; or we fall back to the existing CPU version of
OpenTimer when propagation candidates are scarce. However, we
must highlight that the efficiency of incremental timing has a lot to do
with the design of a STA engine and its application scope. We study the
effect of important factors on the performance of our GPU algorithm.

0 1 2 3 4

·106

0

5

10

15

20

Propagation Candidates

Ru
nt
im

e
(s
)

Runtime vs Problem Size

Ours (1 GPU 1 CPU)
OpenTimer (1 CPU)

0 1 2 3 4

·106

0

2

4

6

8

10

Propagation Candidates

Ru
nt
im

e
(s
)

Runtime vs Problem Size

Ours (1 GPU 40 CPUs)
OpenTimer (40 CPUs)

Figure 11: Runtime values at different problem sizes. Beyond
about 60K propagation candidates, our runtime is always faster
than OpenTimer at any CPU numbers.

7

Table 1: Performance comparison between OpenTimer (40 CPUs) and our GPU-accelerated Implementation (1 GPU) to complete
one iteration of full timing on large circuit designs (>10K gates) of TAU 2015 contest benchmarks

Benchmark # PIs # POs # Gates # Nets # Pins # Nodes # Edges
OpenTimer
Runtime
(40 CPUs)

Our Runtime
(40 CPUs 1 GPU)

Runtime Speed-up
aes_core 260 129 22938 23199 66751 413588 453508 156 ms 138 ms 1.13×
vga_lcd 85 99 139529 139635 397809 1966411 2185601 829 ms 311 ms 2.67×

vga_lcd_iccad 85 99 259067 259152 679258 3556285 3860916 1480 ms 496 ms 2.98×
b19 22 25 255278 255300 782914 4423074 4961058 1831 ms 585 ms 3.13×

cordic 34 64 45359 45393 127993 7464477 820763 274 ms 167 ms 1.64×
des_perf 234 140 138878 139112 371587 2128130 2314576 832 ms 325 ms 2.56×
edit_dist 2562 12 147650 150212 416609 2638639 2870985 1059 ms 376 ms 2.86×

fft 1026 1984 38158 39184 116139 646992 718566 241 ms 148 ms 1.63×
leon2 615 85 1616369 1616984 4328255 22600317 24639340 10200 ms 2762 ms 3.69×

leon3mp 254 79 1247725 1247979 3376832 17755954 19408705 7810 ms 2585 ms 3.02×
netcard 1836 10 1496719 1498555 3999174 21121256 23027533 9225 ms 2571 ms 3.60×

mgc_edit_dist 2562 12 161692 164254 450354 2436927 2674934 1021 ms 368 ms 2.77×
mgc_matrix_mult 3202 1600 171282 174484 492568 2713241 2994343 1138 ms 377 ms 3.02×

tip_master 778 857 37715 38493 95524 533690 570154 163 ms 143 ms 1.14×

PIs: number of primary inputs # POs: number of primary outputs # Gates: number of gates # Nets: number of nets
Pins: number of pins # Nodes: number of nodes in the STA graph # Edges: number of edges in the STA graph

0 0.5 1 1.5

·106

0

5

10

Number of Nets

Ru
nt
im

e
(s
)

Runtime vs Net Count

Ours (1 GPU 1 CPU)
OpenTimer (1 CPU)

0 0.5 1 1.5

·106

0

1

2

3

4

5

Number of Nets

Ru
nt
im

e
(s
)

Runtime vs Net Count

Ours (1 GPU 40 CPUs)
OpenTimer (40 CPUs)

Figure 12: Runtime values at different net counts. Beyond about
40Knets, our GPU-accelerated RC computation is always faster
than OpenTimer, regardless of CPU numbers.

0 0.5 1 1.5

·106

0

2,000

4,000

6,000

Number of Gates

Ru
nt
im

e
(m

s)

Runtime vs Gate Count

Ours (1 GPU 1 CPU)
OpenTimer (1 CPU)

0 0.5 1 1.5

·106

0

200

400

600

800

1,000

Number of Gates

Ru
nt
im

e
(m

s)

Runtime vs Gate Count

Ours (1 GPU 40 CPUs)
OpenTimer (40 CPUs)

Figure 13: Runtime values at different number of gates (∼LUT
numbers). Beyond about 45K gates, our GPU-accelerated LUT
interpolation becomes faster than OpenTimer.

Figure 11 compares of runtime at different problem sizes in terms
of the number of propagation candidates reported by OpenTimer be-
tween our GPU algorithm and OpenTimer using the least and the
maximum CPU concurrency. When the problem size is smaller than
10K, OpenTimer is always faster than ours. This is because launching
GPU operations has certain overhead. For example, it took 1–5 ms to
allocate large global memory in our GPU. Yet the runtime difference
between our algorithm and OpenTimer on small designs is negligible
(< 80 ms). Beyond the threshold of 67K propagation candidates, our
runtime is always faster than OpenTimer. The performance margin
becomes bigger as we increase the problem size. We observe consistent

trend regardless of the number of CPUs used to run both methods. Fig-
ure 12 plots the runtime growth of updating RC timing with increasing
number of nets. Each net has about 10–100 internal nodes in the RC
tree. The runtime growth resembles that of Figure 11 because updating
RC timing occupies the majority of runtime. At small net count (fewer
than 40K nets), we observe little benefit of GPU due to the data and
kernel overheads. After that, our GPU-accelerated RC timing compu-
tation is consistently faster than OpenTimer at any CPU numbers. For
example, at 45K nets, we are 1.16× and 1.52× faster than OpenTimer
under 1 and 40 CPUs. Figure 13 draws the runtime growth of updating
graph timing with increasing number of gates. The result approximates
the impact of LUT counts on the runtime. At about 45K gates (roughly
360K LUTs), ours GPU-accelerated LUT interpolation algorithm starts
outperforming OpenTimer. It is expected as we increase the number of
CPUs, the performance margin between both methods become close
as LUT interpolation is less data- and compute-intensive than other
tasks. To sum up, the performance benefits of our GPU-accelerated
STA algorithm are remarkable when applications define large numbers
of propagation candidates, for example, timing-driven placement and
routing [21–23].

5 CONCLUSION
In this paper, we have presented a new GPU-accelerated STA algorithm
to go beyond the scalability of existing methods. We have developed
GPU-efficient data structures and algorithms to speed up essential
tasks, including levelization, delay computation, and timing propa-
gation in updating a STA graph. We have leveraged task parallelism
to describe dependent CPU-GPU tasks such that data processing and
kernel computation are efficiently overlapped. Compared to the state-
of-the-art STA engine, OpenTimer, we achieved up to 3.69× speed-up
on a large design of 1.6M gates and 1.6M nets using 1 GPU. Our future
work includes developing GPU-accelerated algorithms for different
delay calculators and incorporating GPU task parallelism using CUDA
graph feature to reduce the overhead of CUDA streams. We also plan to
accelerate path-based timing analysis [24, 25] using GPU and integrate
our timer into [26, 27].

8

ACKNOWLEDGE
This project is supported in part by the Beijing Municipal Science and
Technology Program (No. Z201100004220007) and the National Key
Research and Development Program of China (No. 2019YFB2205000).

REFERENCES
[1] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical

Approach, 1st ed. Springer Publishing Company, Incorporated, 2009.
[2] J. Hu, G. Schaeffer, and V. Garg, “TAU 2015 contest on incremental timing analysis,” in

2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE,
2015, pp. 882–889.

[3] W. E. Donath and D. J. Hathaway, “Distributed static timing analysis,” Apr. 29 2003,
uS Patent 6,557,151.

[4] T. Huang, G. Guo, C. Lin, and M. D. F. Wong, “OpenTimer v2: A New Parallel In-
cremental Timing Analysis Engine,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pp. 1–1, 2020.

[5] T.-W. Huang and M. D. Wong, “OpenTimer: A high-performance timing analysis
tool,” in 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE, 2015, pp. 895–902.

[6] T.-W. Huang, C.-X. Lin, G. Guo, and M. D. F. Wong, “Cpp-Taskflow: Fast Task-based
Parallel Programming using Modern C++,” in IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). IEEE, 2019, pp. 974–983.

[7] T.-W. Huang, M. D. Wong, D. Sinha, K. Kalafala, and N. Venkateswaran, “A dis-
tributed timing analysis framework for large designs,” in 2016 53nd ACM/IEEE Design
Automation Conference (DAC). IEEE, 2016, pp. 1–6.

[8] K. E. Murray and V. Betz, “Tatum: Parallel timing analysis for faster design cycles
and improved optimization,” in 2018 International Conference on Field-Programmable
Technology (FPT). IEEE, 2018, pp. 110–117.

[9] Y.-M. Yang, Y.-W. Chang, and I. H.-R. Jiang, “iTimerC: Common path pessimism re-
moval using effective reduction methods,” in 2014 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 2014, pp. 600–605.

[10] T.-W. Huang and M. D. Wong, “UI-timer 1.0: An ultrafast path-based timing analysis
algorithm for CPPR,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 35, no. 11, pp. 1862–1875, 2016.

[11] P.-Y. Lee, I. H.-R. Jiang, and T.-C. Chen, “Fastpass: fast timing path search for general-
ized timing exception handling,” in 2018 23rd Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 2018, pp. 172–177.

[12] “OpenSTA,” https://github.com/abk-openroad/OpenSTA.
[13] J. Hu, D. Sinha, and I. Keller, “TAU 2014 contest on removing common path pessimism

during timing analysis,” in Proceedings of the 2014 on International Symposium on

physical design, 2014, pp. 153–160.
[14] J. Hu, S. Chen, X. Zhao, and X. Chen, “TAU 2016 contest on macro modeling,” in 2016

ACM International Workshop on Timing Issues in the Specification and Synthesis of
Digital Systems. ACM, 2016.

[15] T.-Y. Lai, T.-W. Huang, and M. D. Wong, “LibAbs: An efficient and accurate timing
macro-modeling algorithm for large hierarchical designs,” in Proceedings of the 54th
Annual Design Automation Conference 2017, 2017, pp. 1–6.

[16] P.-Y. Lee and I. H.-R. Jiang, “iTimerM: A compact and accurate timing macro model
for efficient hierarchical timing analysis,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 23, no. 4, pp. 1–21, 2018.

[17] H. H.-W. Wang, L. Y.-Z. Lin, R. H.-M. Huang, and C. H.-P. Wen, “Casta: Cuda-
accelerated static timing analysis for VLSI designs,” in 2014 43rd International Confer-
ence on Parallel Processing. IEEE, 2014, pp. 192–200.

[18] K. Gulati and S. P. Khatri, “Accelerating statistical static timing analysis using graphics
processing units,” in 2009 Asia and South Pacific Design Automation Conference. IEEE,
2009, pp. 260–265.

[19] Y. Shen and J. Hu, “GPU acceleration for PCA-based statistical static timing analysis,”
in 2015 33rd IEEE International Conference on Computer Design (ICCD). IEEE, 2015,
pp. 674–679.

[20] J. Cong, K. Gururaj, W. Jiang, B. Liu, K. Minkovich, B. Yuan, and Y. Zou, “Accelerating
Monte Carlo based SSTA using FPGA,” in Proceedings of the 18th annual ACM/SIGDA
international symposium on Field programmable gate arrays, 2010, pp. 111–114.

[21] M. Kim, J. Hu, J. Li, and N. Viswanathan, “ICCAD-2015 CAD contest in incremental
timing-driven placement and benchmark suite,” in 2015 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2015, pp. 921–926.

[22] N. Viswanathan, G.-J. Nam, J. A. Roy, Z. Li, C. J. Alpert, S. Ramji, and C. Chu, “ITOP:
Integrating timing optimization within placement,” in ISPD, 2010, pp. 83–90.

[23] D. Liu, B. Yu, S. Chowdhury, and D. Z. Pan, “TILA-S: Timing-driven incremental layer
assignment avoiding slew violations,” IEEE TCAD, 2017.

[24] K.-M. Lai, T.-W. Huang, and T.-Y. Ho, “A general cache framework for efficient gener-
ation of timing critical paths,” in Proceedings of the 56th Annual Design Automation
Conference 2019, 2019.

[25] G. Guo, T.-W. Huang, C.-X. Lin, and M. Wong, “A general cache framework for
efficient generation of timing critical paths,” in Proceedings of the 57th Annual Design
Automation Conference 2020, 2020.

[26] Y. Lin, Z. Jiang, J. Gu, W. Li, S. Dhar, H. Ren, B. Khailany, and D. Z. Pan, “DREAMPlace:
Deep learning toolkit-enabled gpu acceleration for modern vlsi placement,” IEEE
TCAD, 2020.

[27] Y. Lin, W. Li, J. Gu, H. Ren, B. Khailany, and D. Z. Pan, “ABCDPlace: Accelerated
batch-based concurrent detailed placement on multi-threaded cpus and gpus,” IEEE
TCAD, 2020.

9

https://github.com/abk-openroad/OpenSTA

