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Abstract—Gate-level simulation with delay annotation is a both critical
and time-consuming task in the circuit design flow. It is highly nontrivial to
parallelize a simulation process, especially on designs with arbitrary general-
purpose sequential elements such as latches, gated clocks, and scan chains.
Current works on parallelizing gate-level simulation are fundamentally
incompatible with these design elements and are highly reliant on circuit par-
titioning to achieve the best performance. In this paper, we propose a general-
purpose gate-level simulation engine with partition-agnostic parallelism. We
propose a general sequential behavior encoding technique and a fast event
scheduling algorithm for general-purpose simulation tasks. Experimental
results have shown up to 30× speed-up over commercial simulation engines.

I. INTRODUCTION

Modern circuit design flow incorporates a vast amount of signoff veri-
fication tasks to ensure the functional correctness and performance of the
design. These tasks include logic verification, timing analysis, and power
analysis, which all require a rigorous simulation of logic events on the
gate-level netlist. As such, gate-level simulation with timing annotation
is an essential task throughout the EDA flow. However, the simulation
for a large circuit design can take hours to days to complete [1]. The
time-consuming simulation harms the design turnaround time and makes
it difficult to fully exploit the circuit optimization opportunities under a
limited time-to-market budget.

With the advancement in parallel computing hardware and software
stacks, new opportunities emerge to accelerate various EDA tasks
using parallel computing on multi-core CPUs and GPUs. However,
the parallelization of gate-level simulation has long been an extremely
difficult task [2]. The main obstacle lies in the so-called “cause-and-
effect” problem [3], [4], where the output events of a logic gate is
dependent on the input ports of the gate. This forces the simulation
process to be a sequential computation task. With the increase in design
complexity, there exist more and more types of sequential elements in
the circuit design with complex behaviors, such as latches, gated clocks,
multiple clock regions, and scan chains. These sequential elements make
it even harder to sort out the simulation dependencies between circuit
elements and pose more difficulty in designing and implementing parallel
simulators.

A number of previous works have proposed different techniques to cir-
cumvent the cause-and-effect problem. They have gained speed-up with
CPU- or GPU-based parallelism on both RTL and gate-level simulation.
The techniques include logic re-simulation [1], [5], [6], [7], leveliza-
tion [8], [9], [10], throughput optimization [11], [12], and partitioning-
based algorithms [13], [14], [15], [16]. However, their approaches come
with harmful side effects on the compatibility and availability of their
simulators, which prevent their wide adoption. Specifically, they have
very limited support for general sequential elements except for simple
flip-flops (FFs) driven by a single clock. Some of these limitations are
deeply rooted in their principle to parallelize the simulation process and
cannot be easily resolved. Moreover, they require extra inputs to the
simulators to achieve the best performance, such as multiple independent
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Fig. 1: The inputs and outputs of delay-annotated gate-level simulation.

simulation traces or a reasonable circuit partitioning. Such inputs are not
readily available in all circuit design patterns and scenarios.

In this paper, we present a general-purpose gate-level simulation
algorithm with partition-agnostic parallelism that is decent in both
performance and compatibility.

We summarize three technical contributions as follows:
• General purpose: we introduce fast parallel delay-annotated gate-

level simulation to all kinds of sequential elements, described as
latches, FFs, general state tables, and any combinations of them.
We design a universal format to model the behavior of sequential
elements and exploit parallelism that arises from their behaviors.

• Partition agnostic: we eliminate the requirement of circuit partition-
ing before the general-purpose simulation process. We generalize
the levelization-based oblivious parallelism to arbitrary circuits with
sequential feedback loops that are previously impossible to be
levelized.

• Heterogeneous parallelism: we scale our algorithm to both multi-
core CPUs and GPUs. We provide automatic selection between CPU
and GPU targets to maximize the performance and improve the
simulation turnaround time under all design scales.

We have compared our simulator with the state-of-the-art commercial
general-purpose simulator Synopsys VCS [17] and demonstrate up to
11× speed-up on CPUs and 30× speed-up on GPUs for a large design
with millions of gates. We demonstrate the superior parallel scalability of
our simulator under complex simulation problems with delay-annotated
general sequential elements. The rest of this paper is organized as
follows. Section II introduces the background of gate-level simulation.
Section III presents details of our general-purpose simulator. Section IV
demonstrated the experimental results. Finally, Section V concludes the
paper.

II. PRELIMINARIES AND RELATED WORK

Gate-level simulation involves simulating the behavior of a post-
synthesis gate-level netlist under given stimuli and timing annotations, as
shown in Figure 1. Specifically, the inputs include a cell library, a gate-
level netlist, a delay annotation database, and one set of input stimuli.
The cell library is usually part of the process design kit (PDK) containing
functional definitions of all kinds of combinational and sequential gates.
The netlist is a directed graph with nodes indicating circuit pins and
edges indicating logic relations. The graph may contain cycles due to
the presence of sequential elements. Delays come from a static timing
analysis of the circuit and are annotated to every edge of the graph.



A simulator keeps track of all signal switch events on every pin. An
event is a tuple of (signal value, timestamp). The simulator reports the
detailed events of selected pins as output or collects them into statistics of
switching activity. These outputs are further provided to later design steps
such as function verification, dynamic timing verification, and power
analysis.

(a) Whether to propagate to t2 or not?

D

Clk

Q

t2

A

B

O
t1<t2

other 
logic

(c) Stimuli parallelism

(d) Partitioning

(b) Re-simulation

(e) Levelization

D
Clk

Q D Q

pseudo-primary input

×

Partition 
2

Partition 
3

Partition 1 D
Clk

Q

D
Clk

Q

D
Clk

Q
CK

Level 1

Level N

D

D

D

Fig. 2: Illustration of the “cause-and-effect” problem and the previous
solutions.

During simulation, every logic gate processes the events at its input
pins and produces events at its output pins. The event processing has
to follow the causality relations. However, the presence of cycles in the
netlist graph becomes one major obstacle in preserving causality and
achieving parallel event processing. We take Figure 2(a) as an example
to illustrate this difficulty. The NAND gate has two input pins A, B, and
one output pin O. For simplicity, we denote the delay of this gate as d.
The output pin O has a feedback loop of combinational and sequential
logic paths back to the input pin A. Pin A has a rising event at time t1,
and pin B has a falling event at time t2. The events of pin A after time
t1 is undetermined yet. In this scenario, the simulator can only safely
advance the events of gate output O to t1 + d, but not to t2 + d. This is
because the change in pin O at time t1 + d might trigger the feedback
loop path and in turn insert new events at pin A before t2, which will
break the causality and lead to wrong simulation result. The causality
requirement makes it hard to perform simulation in parallel because only
the event with the smallest timestamp is safe to propagate.

Prior works have proposed different ways to circumvent the causality
problem. Their techniques usually fall into the following four categories:

• Re-simulation (Figure 2.b) [1], [5], [6], [7]. They first simulate
the RTL-level netlist to get the input signals at sequential element
outputs. Then, they replace all sequential elements in the design
with pseudo-primary inputs injected with the recorded outputs.
Therefore, the edges inside sequential elements are removed and the
graph becomes an acyclic graph with combinational logics. These
methods require a prior RTL simulation to work correctly, which is
a costly operation. Moreover, they ignore the sequential gates that
might be power-hungry, and cannot model the situation where the
timing of signals may affect the circuit logic, such as asynchronous
resets and latches.

• Stimuli parallelism (Figure 2.c) [11], [12]. Instead of seeking
parallelism inside the circuit graph, they propose to simulate

multiple independent testbenches in parallel. This method can be
combined with re-simulation and yield very promising performance
improvement in simulation throughput. It is orthogonal to this work
as both throughput and latency optimization can be utilized to
accelerate the simulation flow.

• Partitioning (Figure 2.d) [13], [14], [15], [16]. These methods are
variants of the Chandy-Misra-Bryant (CMB) algorithm [18], [19].
They usually partition the circuit into several regions called logic
processors (LPs). LPs have their own simulation clocks and CPU
threads. If two LPs are connected, they exchange events on their
boundaries through complex synchronization schemes. As a result,
this method is highly reliant on the quality of the circuit partition
and can perform badly given bad partitions.

• Levelization (Figure 2.e) [8], [9], [10] or cycle-based parallelism.
This method assumes that all sequential elements in the circuit
are D-Flip flops (DFFs) driven by a central clock (e.g., the CK
in Figure 2.e). They break the feedback loops by isolating the
simulation of adjacent clock cycles. In each iteration, all DFFs
run in lockstep and capture their input values. Then, events are
propagated in the acyclic combinational logic graph level by level
to the inputs of DFFs, which become the inputs of the next iteration.
This method clearly lacks support for general sequential elements
and circuit constructs.

As a result, all these four methods suffer from compatibility and
availability issues that make them difficult to be applied to complex
real-world circuit design problems.

III. ALGORITHM

In this section, we present our novel simulation algorithm that
solves the above problems. Our solution is a natural generalization of
the levelization-based algorithm introduced in Section II, but greatly
redesigned to allow circuits with arbitrary sequential elements to be
simulated in parallel without causality violation.

A. Motivation and Main Idea: Stable Time

Our analysis of the behaviors of sequential elements yields a useful
property, which we call “stable time”. The definition is as follows.

Definition. We denote the stable time of a pin as the amount of time
that this pin will remain stable after its last switching event.

Figure 3 shows an example of stable time that corresponds to the
previous example in Figure 2(a). We assume the FF has an input clock
period of T . At time t1, the FF is activated by a clock rising edge. It
then updates its internal state which leads to a new event on net Q–A at
time t1. In addition, we are also pretty sure that nothing can change the
FF output pin Q within the next T time units. This is derived from our
knowledge that (1) the output of rise-triggered DFFs will only change
at rising edges of the input clock, and (2) the next rising edge of this
input clock is at least T time units away. Given this information, we
can safely process the event t2 at the other pin B of the NAND gate in
Figure 3, assuming t1 + T > t2. In other words, from t1 to t1 + T , pin
A is detached from the gate and other pins can propagate independently.
This effectively breaks the cycle dependency of event updates and makes
parallel simulation possible.
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Fig. 3: Motivation of the stable time that arises from sequential elements.



The stable time is a universal feature of all kinds of sequential
elements. This is because all sequential elements keep some internal
state variables that introduce “laziness” in the output managed by input
control signals. For example, an enabled D-latch will change its output
with its input, but it will have stable output signals during its disabled
time. This leads to a stable time until the next change of its control
signal.

We note that previous works based on levelization or CMB-based null
message propagations [18], [19] have been implicitly using some kind of
knowledge on stable time of DFFs, in order to achieve their parallelism.
For example, the levelization algorithm (Figure 2.e) assumes all DFF
outputs will not change during the current iteration of clock cycle.
However, to the best of our knowledge, we are the first to explicitly state
the stable time property of sequential circuit constructs and generalize
it to arbitrary types of sequential cells.
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The stable time can propagate through combinational and sequential
gates based on their behaviors. For example, an OR gate with one input
tied to 1 will output 1 regardless of the activities of other inputs. This
property is useful in dealing with many circuit structures. The gated clock
in Figure 4 is a good example of this. In this example, an OR gate is
used to control a region of FFs and latches. When the gate control signal
is 1, the OR gate filters all clock-rising edges, effectively switching off
the downstream FFs. Our stable time mechanism correctly simulates this
behavior by propagating the stable time knowledge to the OR output,
and then to the output of downstream sequential elements.

B. Stability-Aware Library Compilation

The exploitation of stable-time-based parallelism requires prior knowl-
edge of the behavior of logic gates. Specifically, we need to know when
the output will change given part of the inputs. This information is
not present in current cell libraries with hundreds to thousands of cell
types. Manually annotating this information to the cells is cumbersome
and prone to error. Fortunately, we provide a stability-aware library
compilation algorithm that can automatically discover such input-output
relations given only the logic description of gates. Our algorithm is based
on a technique called bitmask dynamic programming (bitmask-DP). We
support arbitrary combinational or sequential elements by just parsing
the common Liberty cell library.

We use an extended version of truth table to represent logic gates. For
combinational gates, the output is a function of all inputs. For sequential
gates, the output is a function of inputs and internal states. In addition
to 0, 1, X, and Z, we extend the table indices with 3 new types: R, F,
and U. R and F serve to model the edge-triggered sequential elements
such as FFs. U is a special type indicating undetermined inputs and
outputs. Figure 5 shows an example compilation process for a negative-
edge-triggered DFF with low-enable set and reset pins. The compilation
consists of 3 steps as shown in Figure 5(a)–(c):
(a) We first parse the library cell definition to extract all function fields

and sequential element fields (such as ff, latch, and statetable). We
collect the number of inputs and the number of internal variables
(for sequential elements). We also record which inputs are sensitive
to signal edges (i.e., edge sensitivity).

ff ("IQ","IQ_N") {
  clear : “!RST_B”;
  clear_preset_var1 : "H";
  clear_preset_var2 : "L";
  clocked_on : "!CLK_N";
  next_state : "D";
  preset : "!SET_B";
}

Internal States: [IQ]
Inputs: [CLK_N, D, SET_B, RESET_B]
Edge-sensitive: [CLK_N]
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Fig. 5: Library compilation process for a falling-edge triggered DFF with
low-enable SET and RST signals from the sky130 cell library.

(b) Then, we construct a preliminary truth table by enumerating all
combinations of inputs and internal states from 0, 1, X, Z (plus R,
F for edge-sensitive inputs). This preliminary truth table does not
contain undetermined inputs or outputs.

(c) Finally, we analyze the preliminary truth table rows and add new
rows with U inputs. The result is a full extended truth table that
completely models both the logic behavior and the stability behavior
of the gate.

For example, the 4th row of Figure 5(b) states that a falling edge on
CLK_N with no set or reset enabled will update the internal states to
the state of D (which is 1). For Figure 5(c), the 1st row states that when
CLK_N stays at 0, the value of D does not affect the gate output and
the internal state. The 5th row says that a falling edge on CLK_N with
undetermined D input lead to undetermined output, because the FF is
activated with the falling edge.

For every truth table row with U inputs, the new output and internal
states are determined if and only if all different possible assignments
(e.g., 0, 1, X, Z, R, or F) of the U inputs lead to the same outcome.
Otherwise, the output and internal states are defined as U’s. However, it
is time-consuming to enumerate all possible determined assignments for
every such row. Therefore, we propose a fast algorithm to compute the
extended truth table based on bitmask-DP, as presented in Algorithm 1.
We enumerate the set of undetermined inputs s from small sets to large
sets (line 2). For every table row with the specific undetermined set
(line 6), we pick the first undetermined input and enumerate all its
determined values (line 9). We can prove that the output and internal
states are the same for all choices of inputs in s as long as the descendant
states lead to the same result with the first undetermined input fixed.

Algorithm 1 has a linear time complexity in the size of extended state
tables, which is optimal in our case. The compilation of a large cell
library with 1000 cells takes only 1 second in practice and consumes
only 50MB of memory.



Algorithm 1: Bitmask DP for extended truth table
Input: the preliminary truth table T
Input: the number of internal states M and inputs N
Input: the edge sensitivity of inputs
Output: the extended truth table with U-input rows in T

1 For every input, set its number of choices to be 6 (0, 1, X, Z, R,
F) if it is edge-sensitive, or 4 (0, 1, X, Z) if it is not;

2 for s = 1 to 2N − 1 do
3 . s enumerates the bit set of undetermined inputs.
4 K ← the product of input choices that are not in s;
5 first_bit ← the first 1 bit in s, i.e., the undetermined input

with smallest index;
6 for t = 0 to K · 4M − 1 do
7 . t enumerates the determined state of other inputs and

internal states.
8 Create a row r in T with inputs and internal states

encoded in t and other states in s filled with U;
9 for v as the state of first_bit do

10 Query the current truth table with first_bit
determined as v and other states the same as r;

11 if all queried table content are the same then
12 Fill row r with the same output and internal states;
13 else Fill r with U ;

C. Stability-Aware Event Propagation

Event propagation involves executing the events on the input pins
of a gate to produce output events in time order. It is the most
basic component of a gate-level simulator. By introducing stable time
into the event propagation, we can advance the simulation progress
without forcing the simulation to be sequential. A stability-aware event
propagation should consider the input stable times to make its best
decisions, and compute the output stable time in its turn.

Our event propagation algorithm works by processing all input events
by their time order and repeatedly querying the preprocessed extended
truth table for the current output state. We update the internal states
with each query to the truth table. We create a new event once there is
a switch in the output state. We stop and record the output stable time
when the truth table reports an undetermined (i.e., U) output.
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Fig. 6: Event propagation example on an AOI21 gate (a) and a level of
gates (b). We assume zero delays in the gate to make things clear.

Figure 6 shows a comprehensive example of the stability-aware event
propagation process. We draw 6 discrete time points and present the
corresponding truth table rows in the figure. Following are all events in
Figure 6 in the order of time:

Algorithm 2: Parallel event propagation

1 for each propagation iteration do
2 for each level L in the combinational levelization do
3 CPU/GPU Parallel for node p in level L do
4 inputs ← the inputs of p in netlist;
5 events ← signals and end of stable times from

inputs;
6 for events in time order do
7 Query the truth table for the cell type of p, push

new events to p, and stop when U is met;

• The initial states of A1, A2, and B are 1, 1, 0 respectively. The
output state is 0 given the AOI21 function.

• At time (1), A2 switches from 1 to 0, and this leads to the output
being changed to 1. A new event is inserted to the output queue.

• A small glitch happens on A1 that does not affect the output state
because A2 is kept at 0. After the glitch, A1 enters its stable
time.

• At time (2) and (3), A2 switches to 1 and back to 0, which inserts
a corresponding glitch of 0 and 1 to the output queue. After this,
the A2 also enters its stable time.

• At time (4), B switches to 1 which inserts 0 into the output.
• At time (5), there is no events from input states, but the time

goes beyond the stable time of A2. Starting from time (5),
A2 becomes U. Fortunately, the evaluation of A1=1, A2=U, B=1
still yields a deterministic 0 thanks to the stability of the AOI21
gate we automatically discovered through library compilation (Sec-
tion III-B).

• At time (6), B switches to 0. Evaluation of A1=1, A2=U, B=0 yields
U, which terminates the event propagation. The stable time of
the output pin is the time (6) minus the last output event (4).

The event propagation of one pin is a sequential task. Our paralleliza-
tion happens across the level of gates, as shown in Figure 6(b). Given a
levelization of combinational logic nodes, we run Algorithm 2 on CPUs
or GPUs. The details of levelization is explained in the next sections.

D. The Heterogeneous Parallel Simulator

Figure 7 shows the task graph of our heterogeneous parallel gate-level
simulator. Based on the techniques introduced in Section III-B and III-C,
we achieve design-level parallelism in our simulator that obeys the
causality of event propagation and is compatible with arbitrary sequential
elements. In this section, we further introduce the key techniques used
in designing this parallel simulator.

1) Combinational Levelization: In our framework, the causality is
guarded by our stable time mechanism. As a result, we are free to remove
all internal edges in sequential elements of the gate-level netlist. The
remaining netlist contains only combinational logic edges which makes
it acyclic. We levelize the simplified netlist using topological sorting.
The levelization provides a series of levels, within which nodes can be
processed in parallel on CPUs and GPUs, as presented in Algorithm 2.
The number of propagation iterations is proportional to the number of
clock cycles of the underlying design.

2) Streamed Signal IO: Our simulator supports streamed simulation
of input signals. In case when the input testbench (e.g., VCD file) is
very long, streaming the IO and simulation would become a necessity.
Most previous works, including commercial tools, require compiling the
testbench with the design, which may lead to long compilation time and
fat simulation binaries. In every iteration, we read a slice of the input
signals, push the events into our data structure, and launch a series of
propagations until the output signals converge for the input time range.
We output the resulting events and free the memory of these events.
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3) GPU Acceleration with Dynamic Memory Management: Our sim-
ulator supports both CPU and GPU for parallelizing. On GPU, it is hard
to dynamically and efficiently allocate memory for storing the events on
pins. We incorporate a similar technique in [13] and implement a paging
mechanism. The difference between our technique and [13] is that they
use a CPU to manage the memory allocation whereas our allocator and
deallocator run completely on GPU. Specifically, we group every 32
events into a page which is the minimal unit of allocation on GPU.
As the event lists of pins are first-in-first-out (FIFO) queues, we use a
double-linked list to connect the pages allocated to each pin. The demand
of allocation and deallocations go through a GPU-based partial sum and
are completed in 1 GPU kernel. The deallocated memory pages still
belong to the pin it was allocated to. These free pages are stringed into
a single-linked list that can later be retrieved by the same pin directly
on GPU.

IV. EXPERIMENTAL RESULTS

We implemented our parallel gate-level simulator in Rust, C++, and
CUDA. We evaluated the performance of our simulator on a 64-bit Linux
machine with 24 cores Intel Xeon CPU at 2.20 GHz, 64GB memory,
and one Nvidia RTX 3090 Ti GPU. We made a direct performance
comparison with the state-of-the-art commercial simulator, Synopsys
VCS-MX 2018 [17]. We do not make comparison with other parallel
gate-level simulation works because they do not support general-purpose
sequential elements, which is a central contribution of this work.

A. Benchmarks Generation

We collected various open-source benchmarks from multiple sources,
including the TAU 2015 timing contest [20] and one open-source timing
analysis dataset [21]. The goal of our benchmark selection is to provide
large-scale real circuits with reasonable timing annotations. We modify
the gate-level netlists of the designs to include various types of sequential
elements, like gated clocks, scan chain FFs, and latches for timing
borrowing. We transpile the standard cells in these designs to two
different industrial process design kits (PDKs) with 130 nm and 14 nm
technologies, respectively. The benchmark statistics are listed in Table I.
We use OpenSTA [22] to complete the timing analysis under these PDKs
and obtain the delay annotations in SDF format. We randomly generate
the input stimuli for primary input ports for these designs, with different
numbers of cycles and activity ratios covering a wide range of usages.
For CPU designs like picorv32a and leon2, we also insert random
signals to the scan chain FFs to mimic the test scenario and ensure there
is enough activity in the circuits.

TABLE I: Benchmark statistics.

Benchmark Process #Cells #Nets #Pins

aes128 130nm 138457 148997 211045
aes256 130nm 189262 207414 290955
jpeg_encoder 130nm 167960 176737 238216
blabla 130nm 35689 39853 55568
picorv32a 130nm 40208 43047 58676
netcard 14nm 1496720 1498555 3901343
leon2 14nm 1616370 1616984 4178874

B. Overall Comparison

Table II lists a comprehensive runtime comparison between VCS and
our simulator. For every benchmark, we test the performance under two
simulation traces with different lengths and levels of activity. We do
not show the library and netlist compilation runtime of our simulator
because it is negligible (< 5 seconds on all designs). With a single CPU
thread, the performance of our simulator is similar to VCS. With 24
CPU threads, we can achieve an average 3.62× speed-up compared to
single-threaded VCS. The maximum speed-up for 24 threads is 11.01×
on the large design netcard. Although different designs have very
different speed-up ratios due to their unique simulation patterns, we
can consistently outperform VCS under all tests we have performed.
With GPU acceleration enabled, the performance of our simulator can be
further boosted to 20–30× on the large designs netcard and leon2.
GPU does not provide speed-up on the smaller designs due to their very
limited amount of parallelism. As we need to support arbitrary sequential
elements, the intra-circuit parallelism is the only type of parallelism that
we can make use of. Our simulator provides a hybrid CPU/GPU mode
which automatically chooses GPU for designs with more than 1M pins,
and uses multi-core CPU for the smaller designs. This mode usually
achieves the best performance by combining the strengths of the two
devices to tackle different design scales.

C. Parallel Scalability Comparison

Both VCS and our simulator support parallelizing the event simulation
process using multi-core CPUs. The parallel simulation algorithm in
VCS is called fine-grained parallelism (FGP), which is based on circuit
partitioning and synchronization. In this section, we present the perfor-
mance evaluation of VCS and our simulator under different numbers of
CPU threads. We use the compile-time option -fgp and the run-time
option -fgp=num_threads:NUM_THREADS.

Figure 8 shows the comparison result on the benchmark aes256
and leon2. We have tested VCS with SDF delay annotation both
switched off and on. It can be seen that VCS has very good runtime
scalability on gate-level simulation under no delay annotation. However,
VCS fails to maintain that scalability with delay annotation enabled.
On the other hand, our partition-agnostic simulator can scale well under
delay annotations. We note that the parallelization of simulation under
delay annotation is way more difficult than without annotation, especially
in partition-based algorithms due to the complex and asynchronous event
transfer between different parts of the partitioned circuits. FGP provides a
number of options to tune the partitioning and synchronization heuristics.
However, tuning the performance of such an algorithm requires trial and
error with labor-intensive manual intervention, which is not the ideal
case. Our algorithm is partition-agnostic, in the sense that little tuning
needs to be done to get a good performance and scalability of delay-
annotated simulation.

V. CONCLUSION

This paper presents a gate-level simulation engine with versatile
support for arbitrary sequential elements. The simulator supports fast
parallel delay-annotated simulation of single testbenches on both CPU
and GPU, without the need to specify circuit partitions or other hints
on circuit parallelism. The simulation result is guaranteed by the stable



TABLE II: Runtime comparison between VCS and our simulator on different settings of parallelism and simulation traces.

Benchmark Trace #Cycles
Activity VCS Runtime (s) † Ours Runtime (s) Execution Speed-up vs. VCS
Factor∗ Compile Execute 1 CPU 24 CPUs CPU/GPU 1 CPU 24 CPUs CPU/GPU

aes128
short 1000 0.8 30.25 143.33 31.97 21.04 21.04 4.48× 6.81× 6.81×
long 10000 0.5 30.67 349.69 172.66 104.07 104.07 2.03× 3.36× 3.36×

aes256
short 1000 0.8 40.39 199.82 44.79 30.86 30.86 4.46× 6.47× 6.47×
long 10000 0.5 40.22 658.62 319.46 180.77 180.77 2.06× 3.64× 3.64×

jpeg_encoder
short 1000 0.8 37.86 110.40 69.95 55.06 55.06 1.58× 2.01× 2.01×
long 10000 0.5 37.58 993.33 618.65 473.88 473.88 1.61× 2.1× 2.1×

blabla
short 1000 0.8 12.89 26.28 23.31 15.75 15.75 1.13× 1.67× 1.67×
long 10000 0.5 12.88 164.66 191.00 125.36 125.36 0.86× 1.31× 1.31×

picorv32a
short 1000 0.8 8.31 15.10 13.20 10.22 10.22 1.14× 1.48× 1.48×
long 10000 0.5 8.72 132.66 107.16 82.08 82.08 1.24× 1.62× 1.62×

netcard
short 1000 0.8 599.84 3375.53 5431.30 1024.47 200.91 0.62× 3.29× 16.8×
long 10000 0.5 697.07 18282.80 11795.64 1661.23 605.29 1.55× 11.01× 30.21×

leon2
short 1000 0.8 721.26 2209.73 4354.59 1058.26 120.48 0.51× 2.09× 18.34×
long 10000 0.5 726.58 17277.14 49230.80 4513.50 1308.26 0.35× 3.83× 13.21×

Avg. - - - 1.69× 3.62× 7.79×
∗ defined as the ratio of switched input ports on each cycle. † reported by VCS with 1 CPU, which is the most efficient (see Section IV-C).
VCS compilation time is only for reference and does not count in speed-up ratios.
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Fig. 8: Runtime scalability of VCS and our simulator under different
numbers of CPU cores on design aes256 and leon2. The left and
right figures show VCS runtime without and with SDF delay annotation,
respectively.

time mechanism that automatically analyzes, manages, and exploits the
behavior of both combinational gates and arbitrary types of sequential
gates to complete event propagation. A bitmask-DP algorithm is pre-
sented to preprocess the behavior of library cells and collect them into
an extended truth table for later use in simulation. The simulator has
nice properties like automatic CPU/GPU selection, streamed simulation
I/O, and dynamic GPU memory management. Experimental results on
versatile open-source circuits with industrial PDKs yield up to 11×
speed-up on CPU and 30× speed-up on GPU compared to a state-of-the-
art commercial gate-level simulator. In the future, we plan to integrate
circuit signoff tasks into our GPU-accelerated simulator, such as power
analysis and timing analysis engines, and build an end-to-end signoff
verification tool with fast and versatile support for industrial circuits.

ACKNOWLEDGE

This project is supported in part by the National Key Research and
Development Program of China (No. 2021ZD0114702) and National
Science Fundation of China (No. 62004006).

REFERENCES

[1] Y. Zhang, H. Ren, A. Sridharan, and B. Khailany, “GATSPI: GPU acceler-
ated gate-level simulation for power improvement,” in Proc. DAC. IEEE,
2022.

[2] B. Catanzaro, K. Keutzer, and B.-Y. Su, “Parallelizing CAD: a timely
research agenda for EDA,” in Proc. DAC. ACM Press, 2008, p. 12.

[3] K. M. Chandy, V. Holmes, and J. Misra, “Distributed simulation of net-
works,” Computer Networks (1976), vol. 3, no. 2, pp. 105–113, 1979.

[4] R. M. Fujimoto, “Parallel discrete event simulation,” Communications of the
ACM, vol. 33, no. 10, pp. 30–53, 1990.

[5] Y. Zhang, H. Ren, B. Keller, and B. Khailany, “Problem C: GPU accelerated
logic re-simulation,” in Proc. ICCAD. ACM, 2020, pp. 1–4.

[6] C. Zeng, F. Yang, and X. Zeng, “Accelerate logic re-simulation on GPU
via gate/event parallelism and state compression,” in Proc. ICCAD. IEEE,
2021, pp. 1–8.

[7] Y. Zhang, H. Ren, and B. Khailany, “Opportunities for RTL and gate level
simulation using GPUs,” in Proc. ICCAD. ACM, 2020, pp. 1–5.

[8] D. Chatterjee, A. DeOrio, and V. Bertacco, “Event-driven gate-level simu-
lation with GP-GPUs,” in Proc. DAC. ACM Press, 2009, p. 557.

[9] L. Lai, Q. Zhang, H. Tsai, and W.-T. Cheng, “GPU-based hybrid parallel
logic simulation for scan patterns,” in Proc. ITC-Asia. IEEE, 2020, pp.
118–123.

[10] A. Sen, B. Aksanli, M. Bozkurt, and M. Mert, “Parallel cycle based logic
simulation using graphics processing units,” in Proc. ISPDC. IEEE, 2010,
pp. 71–78.

[11] S. Holst, M. E. Imhof, and H.-J. Wunderlich, “High-throughput logic timing
simulation on GPGPUs,” ACM TODAES, vol. 20, no. 3, pp. 1–22, 2015.

[12] D.-L. Lin, H. Ren, Y. Zhang, and T.-W. Huang, “From rtl to cuda: A gpu
acceleration flow for rtl simulation with batch stimulus,” in Proc. ICPP,
2022.

[13] Y. Zhu, B. Wang, and Y. Deng, “Massively parallel logic simulation with
GPUs,” ACM TODAES, vol. 16, no. 3, pp. 1–20, 2011.

[14] D. Chatterjee, A. Deorio, and V. Bertacco, “Gate-level simulation with GPU
computing,” ACM TODAES, vol. 16, no. 3, pp. 1–26, 2011.

[15] D. Chatterjee, A. DeOrio, and V. Bertacco, “GCS: High-performance gate-
level simulation with GPGPUs,” in Proc. DATE. IEEE, 2009, pp. 1332–
1337.

[16] Lijuan Zhu, G. Chen, B. Szymanski, C. Tropper, and Tong Zhang, “Parallel
logic simulation of million-gate VLSI circuits,” in Proc. MASCOTS. IEEE,
2005, pp. 521–524.

[17] “Synopsys VCS,” http://www.synopsys.com.
[18] K. M. Chandy and J. Misra, “Asynchronous distributed simulation via a

sequence of parallel computations,” Communications of the ACM, vol. 24,
no. 4, pp. 198–206, 1981.

[19] R. E. Bryant, “Simulation of packet communication architecture computer
systems.” MIT CAMBRIDGE LAB FOR COMPUTER SCIENCE, 1977.

[20] J. Hu, G. Schaeffer, and V. Garg, “TAU 2015 contest on incremental timing
analysis,” in Proc. ICCAD. IEEE, 2015, pp. 882–889.

[21] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine
inspired graph neural network model for pre-routing slack prediction,” in
Proc. DAC. ACM, 2022.

[22] “OpenSTA,” https://github.com/abk-openroad/OpenSTA.


