
Fusion of Global Placement and Gate Sizing with Differentiable
Optimization

Yufan Du1,2†, Zizheng Guo2,3†, Yibo Lin2,3,4∗, Runsheng Wang2,3,4, Ru Huang2,3,4
1School of EECS, Peking University 2School of Integrated Circuits, Peking University

3Institute of EDA, Peking University 4Beijing Advanced Innovation Center for Integrated Circuits
nbsdyf@stu.pku.edu.cn,{gzz,yibolin,r.wang,ruhuang}@pku.edu.cn

ABSTRACT
Gate sizing is critical in VLSI design because it significantly influ-
ences final design quality. Traditional design flows typically treat
gate sizing as a separate step due to its discreteness nature. How-
ever, this approach not only undermines the optimization efforts of
earlier stages like placement, but also restricts the exploration space
for gate sizing. To address these challenges, we introduce an innova-
tive design flow fusing gate sizing with the earlier global placement
stage. Our method employs differentiable timing and leakage power
objectives and leverages GPU-accelerated computation to enhance
design quality directly and efficiently. Our experimental results
demonstrate significant improvements in timing and power met-
rics, with an average improvement of 77.1% in total negative slack
(TNS) and 43.5% in worst negative slack (WNS), and meanwhile
achieving a reduction in leakage power consumption by 1% com-
pared with one of the most popular design tools, OpenROAD. Our
method can speedup the design process by up to 7×.

1 INTRODUCTION
Gate sizing is critical for timing and power closure in VLSI design
flow. It adjusts the drive strength of each gate within a circuit. It
profoundly impacts the trade-offs between key factors like perfor-
mance, power, and area (PPA) that determine the design’s overall
quality. With the increasing design complexity and the demand
for high-performance and energy-efficient designs, gate sizing has
become more challenging due to the NP-hard combinatorial opti-
mization problem [1] for PPA trade-offs required in the large and
discrete design space.

Complicating matters further, current methodologies typically
explore gate sizing after the placement or routing is fixed. This
approach introduces several notable drawbacks, including: (i) The
exploration space is significantly constrained as the earlier stage
outcomes are fixed, like gate positions from placement results. (ii)
Adjustments to gate sizes will sabotage the optimization efforts
during earlier stages since the resized gates may not fit the original

† Equal contribution, * Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’24, October 27–31, 2024, New York, NY, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1077-3/24/10. . . $15.00
https://doi.org/10.1145/3676536.3676670

Timing Repair Sizer

Global Placement

Detailed Placement
(include Legalization)

Static Timing Analysis

(a) Traditional flow

Fusion of Global Placement
and Gate Sizing

Detailed Placement
(include Legalization)

Differentiable PPA
Objectives

Timing Repair Sizer

Legalization

Static Timing Analysis

(b) Proposed flow

Figure 1: Traditional design flow versus the proposed flow.
Yellow boxes represent OpenROAD [3] steps, and green boxes
represent our steps. For the completeness of the optimization,
we also use OpenROAD sizer after our fusion framework
because it includes additional optimization steps like pin
swapping and buffer insertion for fair comparison.

placement or routing layout. (iii) The process is exceedingly time-
consuming, often necessitatingmultiple iterations to achieve timing
closure, thereby delaying the overall design cycles. For example,
the cutting-edge commercial tool Innovus [2] takes several loops
of timing violation fix, area reclaim, and placement refinement to
optimize timing incrementally after the global placement stage.
One of the most popular open-source design tools, OpenROAD [3],
executes gate sizer and detailed placement separately as well.

Recent trends of design automation encourage a “shift-left” ap-
proach [4], suggesting that circuit constraints and performance
should be considered in earlier stages of the design flow. This strat-
egy is predicated on the premise that earlier stages can provide
more flexibility and larger exploration space for holistic optimiza-
tion. Gate sizing involves trade-offs between timing, power, and
area, primarily dependent on the global placement step early in
the design flow. As a result, the fusion of gate sizing and global
placement has the potential to unlock a much larger search space
and greatly unleash the design optimization opportunity. However,
such a fusion is quite challenging. Global placement is formulated
as a continuous optimization task, whereas gate sizing is discrete
in nature. Modeling and optimizing the complex joint effects of
placement and sizing on timing and power is also highly nontrivial.

This paper proposes a new design flow that fuses gate sizing
with global placement, enabling simultaneous optimization of gate
positions and gate sizes, as depicted in Figure 1. We carefully make
optimization objective functions differentiable with respect to gate

https://doi.org/10.1145/3676536.3676670

positions and sizes. Therefore, jointly optimizing gate positions and
sizes through the gradient descent method is adopted as a natural
choice. We summarize our key contributions as follows.

• To the best of our knowledge, we propose the first framework
that fuses the optimizations of gate positions and gate sizes
with differentiable objectives.

• Our unified differentiable model for gate sizing and global
placement leverages interpolation, gradient descent, and
GPU-accelerated computation strategies to optimize timing
and power objectives efficiently.

• We solve the discrete gate sizing problem by making discrete
gate sizes continuous and leveraging the L1 loss function for
discretization.

• Experimental results show marked improvements in timing
and power metrics, with an average enhancement of 77.1%
in total negative slack (TNS) and 43.5% in worst negative
slack (WNS), while achieving a reduction in power consump-
tion by 1% than OpenROAD [3] for the flow in Figure 1.
Meanwhile, the proposed method can accelerate the design
process by up to 7×.

We believe our work will inspire and stimulate further research
into PPA optimization in the VLSI design flow from new perspec-
tives. The rest of this paper is organized as follows. Section 2 gives
the preliminaries and problem formulation; Section 3 explains the
detailed framework; Section 4 demonstrates the results; Section 5
concludes the paper.
2 PRELIMINARIES
This section reviews the background of nonlinear global placement,
gate sizing, and prior works in both fields.
2.1 Nonlinear Global Placement
Global placement determines the gate positions on the layout area.
A widely-adpoted global placement method is nonlinear global
placement [5–11]. The goal is to minimize the total wirelength
under the constraints of gate density. Placementmetrics such as half-
perimeter wire length (HPWL) and layout density are expressed
as functions of gate positions x, y. By treating gate positions as
continuous variables and optimization objectives as continuous
functions, nonlinear placement can be formulated as a continuous
optimization problem. By transforming the density constraint into
a density penalty term, the objective function of nonlinear global
placement can be formulated as follows:

min
x,y

∑︁
net 𝑒

𝑊𝐿(𝑒; x, y) + 𝜆𝐷 (x, y), (1)

where x, y denote gate positions and 𝜆 represents the density penalty
weight. The function𝑊𝐿 indicates the nets’ HPWL, and 𝐷 serves
as the density penalty function. The optimization can be solved by
the gradient descent method with gradually increasing 𝜆 to spread
gates in the layout.

Recent developments in machine learning have provided a fresh
perspective on this challenge. Prior work [11] draws an analogy
between placement challenges andML paradigms, as summarized in
Table 1. In this context, the global placement problem is analogous
to training a neural network, where the analytical function of the
placement can be expressed, and its gradients with respect to gate
positions can be efficiently computed. This analogy, coupled with

Table 1: The analogy between placement and ML prob-
lems [11].

Machine Learning Placement
Train a neural network Solve global placement
Neural network weights Gate positions

Training data Netlist
Loss function Wirelength objective
Regularization Density constraint

Table 2: Summary of notations.

Notation Description
G Set of gates
S𝑔 Set of available sizes for gate 𝑔
E Set of edges in the timing graph

Nend Set of end nodes in the timing graph
s Set of gate sizes
s𝑔 Size for gate 𝑔
x, y Set of gate positions

𝑑𝑖 𝑗 (s𝑔) Delay from node 𝑖 to node 𝑗

𝑎𝑖 Arrival time at node 𝑖
𝑡 Clock period

𝑡setup Setup time
Leak𝑔 (s𝑔) Leakage power of gate 𝑔 with size s𝑔
Area𝑔 (s𝑔) Area of gate 𝑔 with size s𝑔
Cap𝑖 (s𝑔) Capacitance of the pin 𝑖 with its

corresponding gate size s𝑔
Load𝑖 (s) Load capacitance at output pin 𝑖

Slew𝑖 (s) Transition time at input pin 𝑖

𝑊 𝐿(𝑒; x, y) Wirelength of net 𝑒 with gate positions x, y
𝐷 (x, y) Density penalty with gate positions x, y

the capabilities of modern neural network training toolkits, makes
applying GPU acceleration a natural choice.

Timing optimization is necessary to achieve timing closure. The
literature has explored two categories of techniques that can be
integrated into nonlinear global placement: net-based methods and
path-based methods.

Net-based methods [12–17] dynamically adjust weights of dif-
ferent nets during placement based on their timing criticality. The
net weighting strategy assigns a higher weight to critical nets,
thus encouraging the placement algorithm to shrink those criti-
cal nets by moving surrounding gates and reducing their delays.
Path-based methods formulate the relation between gate positions
and timing objectives during placement stage [18], among which
the differentiable-timing-driven placement approach [19, 20] has
achieved significant success. They establish the forward computa-
tion paths from gate positions to timing objectives and make these
objectives differentiable, thus enabling the backward gradient prop-
agation from objectives to gate positions. Therefore, they achieve
direct optimization of timing metrics with respect to gate positions
by the gradient descent method.
2.2 Gate Sizing
Gate sizing determines the drive strength of each gate within a
circuit to meet different constraints, such as max load capacitance,
max signal transition time, and timing constraints. Specifically,
to achieve timing closure, a timing-driven gate sizer (hereafter
referred to as "sizer" for simplicity) can upsize gates in critical paths

to mitigate the timing violations at the cost of increased power
consumption. The primary objective of the sizer is to minimize a
design’s total leakage power while satisfying timing constraints.
Utilizing the notations summarized in Table 2, the timing-driven
gate sizing problem can be formulated as follows:

min
s,𝑎

∑︁
𝑔∈G

Leak𝑔 (s𝑔)

subject to s𝑔 ∈ S𝑔, ∀𝑔 ∈ G,

𝑎𝑖 + 𝑑𝑖 𝑗 (s) ≤ 𝑎 𝑗 , ∀(𝑖, 𝑗) ∈ E,

𝑎𝑘 ≤ 𝑡 − 𝑡setup, ∀𝑘 ∈ Nend,

(2)

where minimization is over the set of discrete gate variable s and
arrival time variable 𝑎. There are two constraints in this formulation.
Firstly, gate sizes s𝑔 must be selected from the available sizes S𝑔 for
each gate 𝑔. Secondly, signal arrival time at the endpoint of each
timing path should not violate setup time constraints.

The existing timing-driven gate sizing methods can be broadly
categorized into four types:

(1) Dynamic programming-basedmethods, such as [21–23]. Those
works only achieve optimal solutions for tree-structured
circuit topologies and have limitations with reconvergent
paths.

(2) Sensitive-based methods. Works like [24–26] assess the sen-
sitivity of each gate based on prior knowledge. Gate sizes are
adjusted from the most sensitive ones until timing closure.
This approach is entirely heuristic, with outcomes heavily
reliant on the feasibility of the initial sensitivity knowledge.

(3) Learning-basedmethods.Works like the reinforcement learning-
basedmethods [27], generative AI-basedmethods [28], graph
convolutional methods [29, 30], and deep learning-based
methods [31] stand out. While these methods employ the
prevailing learning tricks, the performance of these data-
driven models may be compromised once they are applied
to other cell and timing libraries. Also, a huge amount of
retraining time is unbearable for current fast-paced commer-
cial design cycles.

(4) Heuristic methods improved by Lagrangian relaxation (LR)-
based formulation [32–40], which have achieved remarkable
success in the past decade. By relaxing the timing constraints
in the objective function and employing the Karush-Kuhn-
Tucker (KKT) optimality conditions, the search space can
be greatly pruned. However, they still resort to heuristics
and local search to derive a suboptimal solution, which can
be slow on large designs due to the sequential nature of
gate sizing adjustments. [39] introduced a learning-driven
methodology that reduced the initial heuristic search space
to accelerate the algorithm. [35, 37, 38] focused on enhancing
the efficiency of these processes.

All the above studies regard gate sizing as an individual step and
solve the sizing problem with gate positions fixed, which may limit
the exploration space for optimization.

2.3 Problem Formulation
Problem. Given a set of gates and an initial placement layout, the
objective is to minimize total leakage power and the absolute values

Gate size 1
in library

2
in library

1.2
current size sX

… more sizes

Area 0.392
in library

0.490
in library

0.392*(2-sX)+0.490*(sX-1)
=0.4116

interpolated,
differentiable with sX

Leakage
Power

100
in library

120
in library

100*(2-sX)+200*(sX-1)
=120

interpolated,
differentiable with sX

Discretization
Loss

 ↑Nearest
Discrete
Size = 1

|sX - 1|L1

Timing
Delay/Slew

LUT1*(2-sX)+LUT2*(sX-1)
interpolated,

differentiable with
sX, islew, oload

LUT1 (islew,
oload)

in library

LUT2 (islew,
oload)

in library

Gate X

differentiable with sX

Figure 2: Illustration of linear interpolation on different
metrics and discretization loss.

of TNS and WNS by simultaneously determining gate positions x, y
and gate sizes s.

3 METHODOLOGY
In this section, we present our novel differentiable framework for
simultaneous global placement and gate sizing. Section 3.1 presents
an overview of our differentiable optimization framework. Sec-
tion 3.2, 3.3, and 3.4 give the mathematical details of leakage power,
timing, and wirelength/density objectives, respectively. Section 3.5
demonstrates the complete flow with GPU acceleration. Section 3.6
details the parameter configuration and the ideas behind it.

3.1 Framework Overview
Our key idea in the fusion of global placement and gate sizing is
to introduce gate sizes (s) as a new set of continuous variables in
the optimization formulation of nonlinear global placement, along
with the original gate position variables (x and y). In addition to the
added variables, we also add several new optimization objectives
including timing, power, and area, along with the original HPWL
and density penalty terms. These objectives are now functions of
both gate positions and sizes.

To optimize the sizes and positions simultaneously, we make
all objectives differentiable by carefully analyzing their analytical
formulation and deriving their gradients to both positions and
sizes using back-propagation.With the available gradients, gradient
descent can be utilized for optimization, which fits naturally into
the nonlinear global placement flow.

The gate sizes of a digital circuit should come from a standard
cell library with a set of discrete choices. To define a continuous size
variable, we use interpolations between adjacent sizes (Figure 2)
to define gate area, leakage power, and timing behavior. These
interpolations are differentiable and can propagate gradients back
to both 2 adjacent sizes. As the output of our fused placer-sizer
should still be discrete sizes, we encourage the discretization of size
variables by an additional L1 loss term that we call discretization
loss. This loss pushes a size variable to its nearest discrete choice. Its
weight will be gradually increased along with placement iterations.

Optimization
Variables

Optimization
Objectives

Gate Position
x y

Gate Size
 s

Wirelength

Density

TNS & WNS Leakage
Power

Discretization
Loss

Forward Computation

Backward Gradient

Figure 3: The formulation of our placement optimization
problem considering gate sizes and PPA objectives.

The complete objective function of our placement problem is
formulated as follows:

min
x,y,s

∑︁
net 𝑒

𝑊𝐿(𝑒; x, y; s) + 𝜆1𝐷 (x, y; s)

+ 𝜆2Leak(s) + 𝜆3L1Loss(s, Round(s))
+ 𝑡1WNS(x, y; s) + 𝑡2TNS(x, y; s),

(3)

where 𝑡1, 𝑡2, 𝜆1, 𝜆2 and 𝜆3 are weights for different objectives. WNS
and TNS are represented by their absolute magnitudes in this for-
mulation.

The dependency between 5 optimization objectives and 2 sets of
variables is illustrated in Figure 3. The leakage power and discretiza-
tion loss terms depend solely on and propagate gradients solely
to gate sizes. The other 3 terms, wirelength, density, and timing,
depend on both gate positions and sizes. In these 6 dependencies,
we create 5 gradient channels for backward propagation except
the wirelength–gate size channel because the effect of gate size on
wirelength is quite minor compared to gate position.

In the following subsections, we will introduce the details of each
objective, the overall GPU-accelerated framework, and parameter
configuration.

3.2 Differentiable Leakage Power Objective
We begin with leakage power, which is the simplest objective. The
total leakage power of a design is the sum of the leakage power of
all gates. As a result, it only depends on the gate size s. We express
the leakage power of an interpolated gate (Figure 2) as follows:

Leak𝑔 (s𝑔) = Leak𝑔 (⌊s𝑔⌋)(⌈s𝑔⌉ − s𝑔) + Leak𝑔 (⌈s𝑔⌉)(s𝑔 − ⌊s𝑔⌋). (4)

Taking the partial derivative of Equation (4) with respect to s𝑔 ,
we get

𝜕

𝜕s𝑔
Leak𝑔 (s𝑔) = Leak𝑔 (⌈s𝑔⌉) − Leak𝑔 (⌊s𝑔⌋).1 (5)

The total leakage power is the sum of gate leakage powers:

Leak(s) =
∑︁
𝑔

Leak𝑔 (s𝑔). (6)

1When s𝑔 is a precise integer, this gradient might be zero. To avoid this, we redefine
roundings in this paper as: ⌈s𝑔 ⌉ = min(s𝑔max, ⌈s𝑔 + 𝜖 ⌉) . Here 𝜖 is a small constant
ensuring the 2 roundings differ, and s𝑔max is the largest available size for gate 𝑔. If the
gate size is already the largest size, then ⌊s𝑔 ⌋ ismax(1, s𝑔max − 1) and ⌈s𝑔 ⌉ is s𝑔max .

ca
 sX = 1.2

X Y

 sY = 1.4

Capc (1.4)
Interp.

Elmore
Module

Loadb

Slewb (1.2)
Interp.

Slewe (1.4)
Interp.

Slewa

Loade

b

d

e

Slewe
Slewb Slewc

Netbc pin positions,
Steiner points, etc.

(a) Gradient flow in slew propagation.

ca
 sX = 1.2

X Y

 sY = 1.4

Capc (1.4)
Interp.

Elmore
Module

Loadb

dbc

dab (1.2)
Interp.

dce (1.4)
Interp.

Timing Objective Module

Slewa
Slewc

TNS & WNS
Forward Computation

Backward Gradient

Loade

b

d

e
Netbc pin positions,
Steiner points, etc.

dab dce

(b) Gradient flow in delay propagation.

Figure 4: Gradient flows for differentiable timing objectives
with respect to both gate sizes and locations. We split the
flow into 2 figures due to its complexity.

Taking gradients of Equation (6) with respect to s and we get a
vector of gradients:

∇sLeak(s) =
[
𝜕

𝜕s1
Leak1 (s1),

𝜕

𝜕s2
Leak2 (s2), . . .

]
. (7)

Each term can be calculated using Equation (5). The minimization
of leakage power creates a trend to shrink the gate sizes.
3.3 Differentiable Timing Objectives
Contrary to leakage power, timing objectives are quite complex,
especially when gate sizes are considered variables instead of con-
stants. The gate positions x, y determine the shape of interconnects
between gates, thus determining the resistances and capacitances
of the interconnect. This in turn affects the signal delay not only
for interconnects, but also for cells because of the change in load.
This dependency has been analyzed by Guo et al [19] to derive a
differentiable timing-driven placement objective. In this work, gate
sizes are considered variables as well, which makes deriving the
gradients even more challenging.

We start with a brief review of major techniques introduced
in [19] for completeness and then present our timing gradient
calculation flow on top of them.

(1) Differentiable Steiner Tree: An early routing estimation us-
ing Steiner tree generation like FLUTE [41] is necessary for

timing analysis and optimization. The original FLUTE is not
differentiable. To solve this, [19] proposes to link tempo-
rary Steiner points to related pin coordinates. These Steiner
points move along with the move in related pins during a lim-
ited iteration window, which opens the backward gradient
channel from routing to pin coordinates.

(2) Differentiable Parasitics Extraction: Given the coordinates of
net pins and Steiner points, the resistances and capacitances
(RCs) are extracted as input to signal delay models. The RCs
follow a simple differentiable extraction model that assumes
a linear relation between Manhattan distance and RC values,
defined as part of the technology process. We note that the
capacitances also include the load of sink pins determined by
the type and size of the corresponding receiver gates, which
are regarded as constants in [19].

(3) Differentiable Net Delay Modeling: With the parasitics infor-
mation, signal delay on interconnects is calculated using the
Elmore delay model. This model is differentiable through 4
tree-based dynamic programming [19] that propagates net
delay gradients back to the parasitic values.

(4) Differentiable Gate Delay Modeling and Propagation: The gate
delay is calculated using the non-linear delay model (NLDM),
which consists of piecewise linear look-up tables (LUTs) in-
dexed by input voltage slew and output capacitive load. The
output load is obtained as part of the differentiable parasitics
information. The input slew is recursively defined and prop-
agated throughout the logic level of the entire design. We
note that LUTs are part of the technology library and are
determined by the type and size of gates.

(5) Differentiable WNS and TNS Calculation: With the available
signal arrival time at the endpoint for each timing path, WNS
and TNS can be calculated. Several techniques, such as max
value smoothing, are involved in this process.

Our goal is to consider gate sizes s as differentiable variables
along with the gate positions to optimize WNS and TNS. As can
be seen in the timing calculation flow, a changing gate size affects
nearly everything in delay modeling at the core of timing analysis.
To derive the precise gradients, we analytically formulate this de-
pendency and visualize it in Figure 4. The impact of gate size on
timing objectives happens through 3 key channels: pin capacitance
(part 1), gate delay (part 2), and gate output slew (part 3).

Gates of the same type but different sizes have different pin
capacitance values that affect the upstream load. That load then
changes the upstream net delay, cell delay, slew propagation, and
finally, WNS and TNS. Similar to Equation (4), we interpolate the
pin capacitances as a function of s:

Cap𝑖 (s𝑔) = Cap𝑖 (⌊s𝑔⌋)(⌈s𝑔⌉ − s𝑔) + Cap𝑖 (⌈s𝑔⌉)(s𝑔 − ⌊s𝑔⌋), (8)

where pin𝑖 belongs to gate 𝑔 and Cap𝑖 (s𝑔) is the interpolated pin 𝑖
capacitance. We feed the derived pin capacitance to the differen-
tiable Elmore delay model in [19]. As shown in Figure 4(b), this
differentiable pin capacitance is chained with the Elmore delay
module, passing the gradients from timing objectives all the way

back to gate sizes s. Specifically,(
𝜕

𝜕s𝑔
𝑇

)
part 1

=
∑︁

pin𝑖 ∈gate 𝑔

𝜕Cap𝑖
𝜕s𝑔

× 𝜕

𝜕Cap𝑖
𝑇

=
∑︁

pin𝑖 ∈gate 𝑔
[Cap𝑖 (⌈s𝑔⌉) − Cap𝑖 (⌊s𝑔⌋)]

𝜕

𝜕Cap𝑖
𝑇,

(9)

where 𝑇 denotes either WNS or TNS.
Gate delay and output pin slew are also dependent on gate sizes.

However, they are more involved as the delay and slew models
are differentiable functions (NLDM LUTs) themselves, even for a
single discrete gate size. Delay and slew outputs of an interpolated
gate are thus a function of 3 variables: input slew, output load, and
the interpolated gate size. Specifically, we always calculate 2 gate
delays (respectively, slews) based on 2 adjacent discrete sizes ⌊s𝑔⌋
and ⌈s𝑔⌉, and then interpolate the results based on s𝑔 :

𝑑𝑖 𝑗 (⌊s𝑔⌋) = LUT⌊s𝑔 ⌋ (islew, oload),
𝑑𝑖 𝑗 (⌈s𝑔⌉) = LUT⌈s𝑔 ⌉ (islew, oload),
𝑑𝑖 𝑗 (s𝑔) = 𝑑𝑖 𝑗 (⌊s𝑔⌋)(⌈s𝑔⌉ − s𝑔) + 𝑑𝑖 𝑗 (⌈s𝑔⌉)(s𝑔 − ⌊s𝑔⌋),

(10)

where 𝑖 and 𝑗 determine the connected pins of a timing arc within
gate 𝑔, and two LUT functions calculate two delay values for this
timing arc with two gate sizes ⌊s𝑔⌋ and ⌈s𝑔⌉ by two indices: input
slew value and output load capacitance value.

For the example shown in Figure 2, we first compute two sets of
delay and slew values for two adjacent discrete sizes of a NOT gate,
1 and 2, through two different LUTs. A subsequent linear interpola-
tion between these sizes yields the final delay and slew values. As
depicted in Figure 4(b), with the interpolated gate delays 𝑑𝑎𝑏 and
𝑑𝑐𝑒 , the final timing objectives TNS and WNS can be calculated.
Therefore, the delay channel of the timing gradient with respect to
gate size s𝑔 is as follows:(

𝜕

𝜕s𝑔
𝑇

)
part 2

=
∑︁

arc𝑖 𝑗 ∈gate 𝑔

𝜕𝑑𝑖 𝑗

𝜕s𝑔
× 𝜕

𝜕𝑑𝑖 𝑗
𝑇

=
∑︁

arc𝑖 𝑗 ∈gate 𝑔
[𝑑𝑖 𝑗 (⌈s𝑔⌉) − 𝑑𝑖 𝑗 (⌊s𝑔⌋)]

𝜕

𝜕𝑑𝑖 𝑗
𝑇 .

(11)

The slew calculation works similarly through differentiable lin-
ear interpolation:

Slew𝑖 (s𝑔) = Slew𝑖 (⌊s𝑔⌋)(⌈s𝑔⌉ − s𝑔) + Slew𝑖 (⌈s𝑔⌉)(s𝑔 − ⌊s𝑔⌋), (12)

where pin 𝑖 denotes one of the output pins of gate 𝑔. We chain
the slew values throughout the design logic levels, as shown in
Figure 4(a). We feed the output slew of one gate level to the Elmore
model of the next level. Finally, we derive the slew channel of the
timing gradient with respect to gate size s𝑔 as follows:(

𝜕

𝜕s𝑔
𝑇

)
part 3

=[Slew𝑖 (⌈s𝑔⌉) − Slew𝑖 (⌊s𝑔⌋)]
𝜕

𝜕Slew𝑖
𝑇 . (13)

Because of the partial derivative chain rule, the entire timing
gradient is the sum of all 3 channels:

𝜕

𝜕s𝑔
𝑇 =

(
𝜕

𝜕s𝑔
𝑇

)
part 1

+
(
𝜕

𝜕s𝑔
𝑇

)
part 2

+
(
𝜕

𝜕s𝑔
𝑇

)
part 3

. (14)

By backward propagating the above gradient from timing objec-
tives to gate size s, the gradient descent method will create a trend
to upsize the gates on critical timing paths to improve their timing.
3.4 Wirelength and Density Objectives
Wirelength objective depends on both gate positions x and y and
gate sizes s. Gate sizes affect pin offsets since a larger gate is likely
to have more separate pins. We observe that pin offsets for different
gate sizes are highly heterogeneous and cannot be soundly inter-
polated as a continuous function of gate size. But fortunately, the
impact of pin offsets on the optimization of wirelength or PPA is
quite minor compared to gate positions, capacitances, and LUTs.
Therefore, we do not include the backward gradients of pin offsets
in each placement and sizing iteration. We update the pin offsets to
the nearest discrete sizes every few iterations to account for size
changes during the optimization.

Density penalty objective encourages separation of gates. It also
depends on both gate position x, y and gate size s. Previous non-
linear placement works [7, 8, 10, 11] exploit an analogy between
placement and electrostatic system by modeling gates as electric
charges, density penalty as the system potential energy, and density
gradient as the electric field that pushes the gate charges apart. In
our work, we model the gate size as a variable, which means the
gate area is no longer a constant. In electrostatics-based placement,
this implies a changing electrical charge quantity.

Previously, placement engine takes the gradients of density
penalty with respect to electric charge positions, which yields the
electric force. In our work, we additionally take the gradients with
respect to the electrical charge quantity, which yields the electric
potential. A simplified version of density penalty is:

𝐷 (x, y; s) =
∑︁
gate 𝑔

Area𝑔 (s𝑔) × Φ(x𝑔, y𝑔), (15)

where Φ(x𝑔, y𝑔) is the electrical potential2 of gate 𝑔 at position
x𝑔, y𝑔 . The partial derivative of the density penalty with respect to
gate area Area𝑔 is:

𝜕

𝜕Area𝑔 (s𝑔)
𝐷 (x, y; s) = Φ(x𝑔, y𝑔). (16)

For gate area, we also use linear interpolation, as depicted in
Figure 2. The forward and backward gradient equations are as
follows:

Area𝑔 (s𝑔) = Area𝑔 (⌊s𝑔⌋)(⌈s𝑔⌉ −s𝑔) +Area𝑔 (⌈s𝑔⌉)(s𝑔− ⌊s𝑔⌋), (17)

𝜕

𝜕s𝑔
Area𝑔 (s𝑔) = Area𝑔 (⌈s𝑔⌉) − Area𝑔 (⌊s𝑔⌋). (18)

We can derive the partial derivative of the density penalty with
respect to gate size s𝑔 as follows:

𝜕

𝜕s𝑔
𝐷 (x, y; s) =

𝜕Area𝑔 (s𝑔)
𝜕s𝑔

𝜕

𝜕Area𝑔 (s𝑔)
𝐷 (x, y; s)

= [Area𝑔 (⌈s𝑔⌉) − Area𝑔 (⌊s𝑔⌋)] × Φ(x𝑔, y𝑔).
(19)

2In practice, the absolute value for Φ(x𝑔, y𝑔) varies across designs of different scales
and only the relative values make sense. As a result, we normalize the electric potential
in sizing gradient calculation so that their sum equals 1, which will ease parameter
selection.

Update Steiner Tree w. FLUTE

CPU
Task
GPU
Task

Update Gate Position &
Gate Size

Wirelength
Gradient

Density
Gradient

WNS/TNS
Gradient

Power
Gradient

Discretization
Gradient

Update Parameters

Update Gate Size &
Pin Offset
for Placer

Converge?

Initial Gate Position and Size

Global Placement and Gate Sizing

No

Yes

Otherwise

Every 10 Iterations

Legalization Output

Figure 5: GPU-accelerated fusion framework.

Gates located in denser regions incur a higher density penalty,
which discourages upsizing in these areas. Effectively, this pro-
motes upsizing of gates in sparser regions on the critical paths.
This differentiable fusion formulation of placement and sizing can
thus explore a much richer search space and discover better joint
placement and sizing solutions.
3.5 GPU-Accelerated Fusion Framework
Global placement is inherently time-consuming, particularly if we
need to optimize gate sizes and positions simultaneously. Tradition-
ally, handling large designs could require hundreds to thousands
of iterations, often taking several hours on CPUs. Given the in-
tense computational demands of such operations, GPUs can offer a
significant advantage thanks to their capacity for efficient parallel
processing. We employ a GPU-accelerated fusion framework to
speed up the process significantly.

As depicted in Figure 5, our GPU-accelerated framework runs
iteratively to update gate positions and sizes. In each iteration, we
independently calculate 5 different objectives (wirelength, density,
timing, power, discretization loss). We then back-propagate and
merge their gradients with respect to gate positions and sizes. We
use the final merged gradient to update gate positions and gate
sizes. We note that every objective and gradient calculation is imple-
mented using high-performance GPU kernels. This includes a GPU-
accelerated differentiable STA engine as well as a GPU-accelerated
differentiable electric force/electric potential solver.

During the iterations, we also do a number of auxiliary tasks,
including the update of Steiner trees (every 10 iterations, see [19]),
gradient-free pin offsets, and hyperparameters. The hyperparame-
ter weights for different objectives change dynamically during the
optimization process, which helps to balance the trade-offs between
different objectives and achieve better convergence.
3.6 Parameter Configuration
In this section, we detail the selection of hyperparameters in this
work. Without loss of generality, we assume the units are as follows:

timing slacks in nanoseconds (ns), area in square millimeters (mm2),
and leakage power in milliwatts (mW). WNS and TNS objective
optimization weights 𝑡1 and 𝑡2 are initialized at 0.025 and 0.0005,
respectively. The 𝑡1 and 𝑡2 parameters will increase by 1% every
iteration to progressively enhance the importance of the timing
objective. While these timing gradients include both gate positions
and sizes, we observe that the gradient to sizes is typically much
larger than to positions, which may cause increases in gate sizes
in the early stage. As a result, we additionally scale down the gate
size gradient by a factor of 1800. The weight 𝜆1 applied to the
density penalty gradient to gate position x and y is set as the default
value in DREAMPlace [11]. The weight 𝜆2 applied to leakage power
objective is set at 1, increasing by 1‰ every iteration to encourage
power reclaim in later stages. The discretization loss factor 𝜆3 is
set at 0.01, which also increases by 1% every iteration to guide
the gate sizes towards the nearest discrete values gradually. The
timing-driven global placement and gate sizing kickstart at the
100th placement iteration.

In our experiments, uncontrolled expansion of gate sizes can
trigger a vicious cycle. Specifically, the placer may disperse neigh-
boring gates of one upsized gate, which couldworsen timingmetrics
and compel the sizer to increase gate sizes further to counteract
this degradation. To mitigate potential optimization divergence, we
have implemented several safeguards:

Firstly, we clip the gradient of each gate size within the range
[−0.3, 0.3] to prevent gradient explosion. Additionally, gate sizes
are constrained to remain within legal values each iteration, ad-
justed if they fall below 1 or exceed s𝑔max. Moreover, we employ
a preconditioning strategy to moderate the influence of the gate
size gradient. For each gate 𝑔 with its size s𝑔 , the gradient is scaled
down by a factor determined by the following formula:

#pins(𝑔) + 𝜆1 × Area𝑔 (s𝑔), (20)

where #pins(𝑔) represents the number of pins of gate 𝑔, Area𝑔 (s𝑔)
denotes the area of gate 𝑔 with size s𝑔 , and 𝜆1 is the density penalty
weights for placer, a gradually increasing value that promotes
gate spreading. Additionally, since the density penalty and leakage
power objectives can directly counteract excessive upsizing, the
weights of these objectives are increased if gate density is high or
the circuit scale is large.

4 EXPERIMENTAL RESULTS
4.1 Experimental Setup
We implement our proposed fusion flow combining global place-
ment and gate size optimization using C++ and CUDA kernels,
based on the open-source placer DREAMPlace [11]. Our environ-
mental setup includes a server equipped with a 40-core Intel Xeon
Gold 6230 CPU at 2.10 GHz, 256GB RAM, and an Nvidia A40 GPU
with 48GB of memory. We evaluate our performance on large indus-
trial designs sourced from eight open-source CircuitNet-N28 [42]
datasets, all synthesized under a 28nm commercial technology node.
Our wire unit RC also follows this library. Detailed benchmark sta-
tistics are presented in Table 3. These benchmarks vary in scale
and complexity, reflecting a range of real-world design scenarios.

Table 3: CircuitNet [42] benchmark statistics.

Benchmark Period (ns) #Macros #Cells #Nets #Pins
RISCY-a 2.0 3 54079 54635 211308

RISCY-FPU-a 2.0 3 81001 81777 303014
zero-riscy-a 2.0 3 46390 46089 172731
RISCY-b 2.0 13 34664 36420 129794

RISCY-FPU-b 2.0 13 63823 60428 210901
zero-riscy-b 2.0 13 21738 22902 81481
NVDLA-small 2.0 108 338280 353608 1236682
OpenC910-1 3.0 32 808686 818218 3265940

4.2 Results and Analysis
We compare our newly developed flow with the open-source Open-
ROAD [3] flow, representing a traditional design flow that separates
global placement and gate sizing. In OpenROAD, we conduct global
placement with timing_driven option enabled for the fairness
of comparison. The OpenROAD timing-driven gate resizer3 lever-
ages local optimizations to adjust gate sizes based on timing analysis
feedback incrementally. As discussed in Section 2, this represents
a heuristic approach to gate sizing optimization. Additionally, the
OpenROAD timing repairer includes not only a resizer but also
other design steps like pin swapping and buffer insertion. There-
fore, to ensure the fairness and authenticity of our experiments, we
also apply an OpenROAD sizer after our flow, as shown in Figure 1.
After the OpenROAD sizer, some gates may not fit into the origi-
nal placement layout, requiring an additional OpenROAD detailed
placement to ensure legal and compatible results.

Apart from OpenROAD flow, for a thorough evaluation, we also
acquired the binary executable file from authors of [19] and conduct
an ablation study4 that performs timing-driven placement-only op-
timization. Gate size will only be optimized by the OpenROAD sizer
to further prove that simultaneous optimization of gate positions
and gate sizes is more effective than the traditional approach.

To summarize, OpenROAD’s flow incorporates a timing-driven
global placement, timing-driven gate sizing, and detailed placement.
Our fusion flow consists of a novel fusion of global placement and
gate sizing, followed by DREAMPlace’s [11] greedy and abacus
legalization, and then followed by OpenROAD timing-driven sizer
and detailed placement. The ablation study includes the timing-
driven global placement [19], OpenROAD timing-driven sizer, and
detailed placement.

The metrics for our evaluation, including TNS,WNS, and leakage
power, are reported by OpenSTA [45], one of the most widely used
power and static timing analysis tools. Notably, our baseline Open-
ROAD sizer embeds OpenSTA as RC and timing calculation engine
that is the same as our evaluator, whereas our approach employs a
custom differentiable timing engine to enable gradient-based opti-
mization. Given the inherent discrepancies between different timing
engines for placement-stage timing estimation, the optimization
directions might differ slightly. Therefore, the OpenROAD sizer
added to our flow also plays a role in mitigating this discrepancy
and ensuring both can be compared under OpenSTA reports.

3In OpenROAD, it is invocated using repair_timing command.
4The test result is different from [43] due to multiple differences in our experimental
setup. We use OpenSTA for timing report while [43] uses evaluation timer and wire
unit RC settings from ICCAD 2015 contest [44]. Furthermore, our flow introduces a
detailed sizer in flow which is not present in [43].

Table 4: Timing and leakage power comparison between the OpenROAD [3] flow, an ablation study that includes timing-driven
global placement [19] and gate sizing by OpenROAD, and our flow. The best results are highlighted in bold.

Benchmark OpenROAD [3] Flow Separate Flow ([19] and [3]) Ours
TNS (ns) WNS (ns) Power (mW) TNS (ns) WNS (ns) Power (mW) TNS (ns) WNS (ns) Power (mW)

RISCY-a -515.51 -0.23 1.11 -611.05 -0.18 1.10 -192.31 -0.15 1.11
RISCY-FPU-a -822.06 -0.23 1.88 -1730.32 -0.40 1.86 -497.34 -0.21 1.88
zero-riscy-a -2.40 -0.05 1.19 -10.88 -0.05 1.17 -2.31 -0.03 1.13
RISCY-b -456.28 -0.26 0.833 -310.40 -0.13 0.822 -271.95 -0.13 0.823

RISCY-FPU-b -803.78 -0.71 1.56 -1147.10 -0.52 1.54 -881.1 -0.44 1.54
zero-riscy-b -46.07 -0.21 0.574 -40.27 -0.12 0.567 -23.92 -0.10 0.567
NVDLA-small -2850.55 -0.97 6.28 -780.79 -0.32 6.31 -154.05 -0.32 6.38
OpenC910-1 -7176.30 -0.71 9.60 -8535.54 -0.77 9.86 -1097.02 -0.64 9.92
Avg. Ratio 4.37 1.77 1.01 3.54 1.29 1.00 1.00 1.00 1.00

Table 5: Runtime comparison for different design bench-
marks. Column names represent: GP (OpenROAD Global
Placement), Sizer (OpenROAD Gate Sizing), DP (OpenROAD
Detailed Placement), Fusion (Our Global Placement and Gate
Sizing), Legal. (DREAMPlace Legalization), and Total (Total
Runtime). The best results are highlighted in bold.

Design OpenROAD Flow (s) Ours (s)
GP Sizer DP Total Fusion Legal. Sizer DP Total

RISCY-a 237 18 2 257 95 1 14 1 111
RISCY-FPU-a 340 105 1 446 109 1 173 1 284
zero-riscy-a 180 7 10 197 89 1 8 1 99
RISCY-b 149 7 1 157 75 1 11 1 88

RISCY-FPU-b 244 115 1 360 89 1 125 1 216
zero-riscy-b 124 17 1 142 65 1 21 1 88
NVDLA-small 1511 97 7 1615 212 2 17 3 234
OpenC910-1 4678 917 8 5603 287 3 577 5 872
Avg. Ratio 3.03 1.00
* The running time for each step is rounded up to the nearest integer.

As depicted in Table 4, our approach yields a significant average
improvement of 77.1% (1-1/4.37) in TNS and 43.5% (1-1/1.77) in
WNS compared to the OpenROAD flow. Meanwhile, our method
achieves an average reduction in leakage power consumption by
1% (1-1/1.01), highlighting its capability to balance power and per-
formance effectively. In addition, the ablation study, in which gate
size remains static during timing-driven global placement and will
only be optimized by OpenROAD, further proves the benefit of
our fusion optimization strategy that explores a larger joint search
space between placement and sizing. We conduct an additional
ablation study to prove the effectiveness of our discretization loss
by removing that L1 loss from the objective. The results shown in
Figure 6 demonstrate that our overall performance will deteriorate
for the largest design, OpenC910-1, once the discretization loss
objective is removed.

For the large designs evaluated, including NVDLA-small and
OpenC910-1, our approach offers substantial benefits in optimizing
TNS and WNS despite exhibiting a higher leakage power than the
conventional OpenROAD flow. This is crucial for high-performance
designs, where timing closure is a critical challenge. Our method
not only enhances timing and power metrics but also significantly
improves the efficiency of the entire placement flow, achieving an
average 3× speed-up compared to the baseline OpenROAD flow,
as detailed in Table 5. As the scale and complexity of the designs
increase, the acceleration ratio can reach up to approximately 7×
for NVDLA-small and OpenC910-1 designs. This enhancement

OpenROAD DAC22 No L1 Loss Ours

0 2 4 6 8

TNS

WNS

Leakage Power

1.00

1.00

1.00

0.99

1.08

1.14

0.99

0.97

1.20

7.78

1.11

6.54

Figure 6: Comparison across different flows on the largest
design, OpenC910-1. Metrics are normalized based on results
from our proposed flow.

largely benefits from the heterogeneous GPU acceleration and the
efficiency of the differentiable optimization framework. A notable
bottleneck in our method is the OpenROAD sizer, a sequential
process that takes much runtime. This runtime cost can be lowered
with the fusion of sizing, buffering, and pin swapping into early
design stages in future works.
5 CONCLUSION
In this paper, we introduce a pioneering approach to VLSI design
that integrates global placement with gate sizing to optimize PPA
metrics more effectively. Leveraging differentiable objective func-
tions and GPU-accelerated computation, our method not only sig-
nificantly enhances design quality but also provides a substantial
acceleration, achieving up to a 7× acceleration in speed compared to
the traditional OpenROAD flow. Our experimental results demon-
strate remarkable improvements in timing and power metrics, with
an average enhancement of 77.1% in TNS and 43.5% in WNS, while
achieving a 1% reduction in leakage power consumption. Our fu-
ture work includes adding more optimization strategies such as pin
swapping within this framework. We believe our work opens up
new possibilities for differentiable and fusion strategies in EDA and
will inspire further research in this field.
ACKNOWLEDGE
This work is supported in part by STIC, the Natural Science Founda-
tion of Beijing, China (Grant No. Z230002), and 111 project (B18001).

REFERENCES
[1] W. Ning, “Strongly np-hard discrete gate-sizing problems,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 13, no. 8, pp.
1045–1051, 1994.

[2] Cadence Design Systems, Innovus User Guide, Cadence Design Systems, Inc.,
2022, version 21.13.

[3] The-OpenROAD-Project, “Openroad,” GitHub repository, 2024, available online:
https://github.com/The-OpenROAD-Project/OpenROAD.

[4] V. Bhardwaj, “Shift left trends for design convergence in soc: An eda perspective,”
International Journal of Computer Applications, vol. 174, no. 16, pp. 22–27, Jan
2021.

[5] T.-C. Chen et al., “Ntuplace3: An analytical placer for large-scale mixed-size
designs with preplaced blocks and density constraints,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 7, pp. 1228–
1240, 2008.

[6] M.-K. Hsu et al., “Ntuplace4h: A novel routability-driven placement algorithm
for hierarchical mixed-size circuit designs,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 33, no. 12, pp. 1914–1927, 2014.

[7] J. Lu et al., “eplace: Electrostatics-based placement using fast fourier transform
and nesterov’s method,” ACM Trans. Des. Autom. Electron. Syst., vol. 20, no. 2,
mar 2015.

[8] C.-K. Cheng et al., “Replace: Advancing solution quality and routability validation
in global placement,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 9, pp. 1717–1730, 2019.

[9] Z. Zhu et al., “Generalized augmented lagrangian and its applications to vlsi
global placement,” in 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), 2018, pp. 1–6.

[10] J. Lu et al., “eplace-ms: Electrostatics-based placement for mixed-size circuits,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 34, no. 5, pp. 685–698, 2015.

[11] Y. Lin et al., “Dreamplace: Deep learning toolkit-enabled gpu acceleration for
modern vlsi placement,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 40, no. 4, pp. 748–761, 2021.

[12] H. Chang et al., “Net criticality revisited: an effective method to improve timing
in physical design,” in ACM International Symposium on Physical Design (ISPD).
Association for Computing Machinery, 2002, p. 155–160.

[13] T. Kong, “A novel net weighting algorithm for timing-driven placement,” in
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2002, pp.
172–176.

[14] B. Halpin, C. Y. R. Chen, and N. Sehgal, “A sensitivity based placer for standard
cells,” in Proceedings of the 10th Great Lakes Symposium on VLSI. Association
for Computing Machinery, 2000, p. 193–196.

[15] H. Ren, D. Pan, and D. Kung, “Sensitivity guided net weighting for placement-
driven synthesis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 24, no. 5, pp. 711–721, 2005.

[16] Z. Xiu and R. Rutenbar, “Timing-driven placement by grid-warping,” in Proceed-
ings. 42nd Design Automation Conference, 2005., 2005, pp. 585–590.

[17] P. Liao et al., “Dreamplace 4.0: Timing-driven global placement with momentum-
based net weighting,” in IEEE/ACM Proceedings Design, Automation and Test in
Eurpoe (DATE), 2022, pp. 939–944.

[18] A. Chowdhary et al., “How accurately can we model timing in a placement
engine?” in ACM/IEEE Design Automation Conference (DAC), 2005, pp. 801–806.

[19] Z. Guo and Y. Lin, “Differentiable-timing-driven global placement,” in ACM/IEEE
Design Automation Conference (DAC), 2022, p. 1315–1320.

[20] W. Li et al., “Calibration-based differentiable timing optimization in non-linear
global placement,” in ACM International Symposium on Physical Design (ISPD).
New York, NY, USA: Association for Computing Machinery, 2024, p. 31–39.

[21] Y. Liu and J. Hu, “Gpu-based parallelization for fast circuit optimization,” in
ACM/IEEE Design Automation Conference (DAC), 2009, pp. 943–946.

[22] S. Hu, M. Ketkar, and J. Hu, “Gate sizing for cell-library-based designs,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 6, pp. 818–825, 2009.

[23] Y. Liu and J. Hu, “A new algorithm for simultaneous gate sizing and threshold
voltage assignment,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 29, no. 2, pp. 223–234, 2010.

[24] J. P. Fishburn, “Tilos: A posynomial programming approach to transistor sizing,”
Proc. Int. Conf. On Computer-Aided Design, vol. 33, no. 2, pp. 236–238, 2003.

[25] J. Hu et al., “Sensitivity-guided metaheuristics for accurate discrete gate sizing,”
in IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2012,
pp. 233–239.

[26] A. B. Kahng et al., “High-performance gate sizing with a signoff timer,” in Pro-
ceedings of the International Conference on Computer-Aided Design, ser. ICCAD
’13. IEEE Press, 2013, p. 450–457.

[27] Y.-C. Lu et al., “Rl-sizer: Vlsi gate sizing for timing optimization using deep
reinforcement learning,” in ACM/IEEE Design Automation Conference (DAC), 2021,
pp. 733–738.

[28] S. Nath et al., “Transsizer: A novel transformer-based fast gate sizer,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2022, pp. 1–9.

[29] C.-K. Cheng et al., “Dagsizer: A directed graph convolutional network approach
to discrete gate sizing of vlsi graphs,” TODAES, no. 4, 2023.

[30] P. Pham and J. Chung, “Agd: A learning-based optimization framework for eda
and its application to gate sizing,” in ACM/IEEE Design Automation Conference
(DAC), 2023, pp. 1–6.

[31] Y. Ye et al., “Learning-driven physically-aware large-scale circuit gate sizing,”
2024. [Online]. Available: https://arxiv.org/abs/2403.08193

[32] C.-P. Chen, C. Chu, and D. Wong, “Fast and exact simultaneous gate and wire
sizing by lagrangian relaxation,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 18, no. 7, pp. 1014–1025, 1999.

[33] S. Daboul et al., “Provably fast and near-optimum gate sizing,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 12, pp.
3163–3176, 2018.

[34] C.-P. Chen, C. Chu, and D. Wong, “Fast and exact simultaneous gate and wire
sizing by lagrangian relaxation,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 18, no. 7, pp. 1014–1025, 1999.

[35] D. Chinnery and A. Sharma, “Integrating lr gate sizing in an industrial place-and-
route flow,” in ACM International Symposium on Physical Design (ISPD), 2022, p.
39–48.

[36] A. Sharma et al., “Fast lagrangian relaxation-based multithreaded gate sizing
using simple timing calibrations,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), vol. 39, no. 7, pp. 1456–1469, 2020.

[37] M. M. Ozdal, S. Burns, and J. Hu, “Algorithms for gate sizing and device parameter
selection for high-performance designs,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 31, no. 10, pp. 1558–1571,
2012.

[38] D. Mangiras, D. Chinnery, and G. Dimitrakopoulos, “Task-based parallel program-
ming for gate sizing,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 42, no. 4, pp. 1309–1322, 2023.

[39] X. Zhou et al., “Heterogeneous graph neural network-based imitation learning
for gate sizing acceleration,” in IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2022, pp. 1–9.

[40] A. Sharma et al., “Fast lagrangian relaxation based gate sizing using multi-
threading,” in 2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2015, pp. 426–433.

[41] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilinear steiner
minimal tree algorithm for VLSI design,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 27, no. 1, pp. 70–83, 2008.

[42] Z. Chai et al., “CircuitNet: An open-source dataset for machine learning in vlsi
cad applications with improved domain-specific evaluation metric and learning
strategies,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2023.

[43] X. Jiang et al., “Accelerating routability and timing optimization with open-
source ai4eda dataset circuitnet and heterogeneous platforms,” in 2023 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE, 2023.

[44] M. Kim et al., “ICCAD-2015 CAD contest in incremental timing-driven placement
and benchmark suite,” in IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2015, pp. 921–926.

[45] The-OpenROAD-Project, “Parallax static timing analyzer,” GitHub repository,
2024, available online: https://github.com/The-OpenROAD-Project/OpenSTA.

https://github.com/The-OpenROAD-Project/OpenROAD
https://arxiv.org/abs/2403.08193
https://github.com/The-OpenROAD-Project/OpenSTA

