
Efficient Critical Paths Search Algorithm using
Mergeable Heap

Kexing Zhou*

CECA, CS Department
Peking University
Beijing, China

zhoukexing@pku.edu.cn

Zizheng Guo*

CECA, CS Department
Peking University
Beijing, China
gzz@pku.edu.cn

Tsung-Wei Huang
ECE Department
University of Utah

Salt Lake City, USA
tsung-wei.huang@utah.edu

Yibo Lin†
CECA, CS Department

Peking University
Beijing, China

yibolin@pku.edu.cn

Abstract—Path searching is a central step in static timing
analysis (STA). State-of-the-art algorithms need to generate path
deviations for hundreds of thousands of paths, which becomes
the runtime bottleneck of STA. Accelerating path searching is a
challenging task due to the complex and iterative path generating
process. In this work, we propose a novel path searching
algorithm that has asymptotically lower runtime complexity than
the state-of-the-art. We precompute the path deviations using
mergeable heap and apply a group of deviations to a path
in near-constant time. We prove our algorithm has a runtime
complexity of O(n logn+k log k) which is asymptotically smaller
than the state-of-the-art O(nk). Experimental results show that
our algorithm is up to 60× faster compared to OpenTimer and
1.8× compared to the leading path search algorithm based on
suffix forest.

I. INTRODUCTION

Static timing analysis (STA) is a pivotal step in the over-
all design flow [1]. Based on the circuit design and delay
annotations of the timing arcs, STA evaluates the setup/hold
timing performance of the circuit under best-case and worst-
case scenarios. The result of STA is a set of data paths with
the largest timing violations. These paths are then used by the
designers to optimize the design. In real-case STA scenarios,
designers often require the STA engine to generate 10K or
even 100K individual paths [2], [3]. On a design with millions
of gates and nets, the search for such a large number of paths
in STA takes several hours to complete, slowing down the
entire circuit design process.

Recent works have integrated different graph-based algo-
rithms to reduce the path searching runtime [4], [5], [6], [7],
[8], [9]. Most of them are based on a progressive approach
that generates path deviations in increasing order of timing
violations, i.e. path slack. In this approach, each time a path is
generated, all nodes on the path and their incoming edges are
enumerated exhaustively, which is the central computational
challenge of the path searching process. Huang et al [4],
[5] adopt multi-core CPU-based parallelism to explore the
deviation paths in parallel and have shown 4× speedup. How-
ever, their runtime scalability saturates at around 8–16 CPUs.
Guo et al [9] present a parallel deviation path exploration
algorithm on GPUs based on a technique called suffix forest,
and delivers 25–45× speedup compared to CPU parallelism.

*Equal contribution, ordered by first names. †Corresponding author.

However, they need to enumerate even more deviation paths
than [5] because their parallelization scheme prevents early
pruning of unwanted paths.

Despite recent progress on path searching acceleration,
state-of-the-art algorithms still need to enumerate all possible
deviations for each and every critical path generated. This
bounds their runtime complexity to O(nk), where n is the size
of the circuit graph, and k is the number of paths requested
to generate. As a result of this runtime complexity, when a
large-scale circuit design (large n) meets a large demand of
path counts (large k), current algorithms will fail to handle
the STA task in a reasonable amount of time. To reduce long
runtimes of path searching, we need a novel search algorithm
that can improve the runtime in both practical and theoretical
aspects. However, designing an asymptotically faster algorithm
for path searching in practice is very challenging. The previous
path searching algorithm includes a complex and iterative path
expansion process, which requires a very strategic algorithm
design to reduce the search space. Algorithms with asymp-
totically lower runtime complexity may exhibit a large time
constant, sometimes even slower than their opponent with
higher runtime complexity [10]. Thus, it is difficult to design
and implement such an algorithm of practical interest that can
benefit broad STA software.

In this work, we propose a new path searching algorithm
that is asymptotically better than the state-of-the-art path
searching algorithms by leveraging two novel data structures,
leftist heap and skew heap. We summarize our technical
contributions as follows:

1) We store all deviations into a persistent mergeable
heap, which is a data structure supporting fast merging
and duplicating. This allows us to apply a group of
deviations in near-constant time.

2) We incorporate a novel deviation preprocessing step, in
which we precompute the deviation paths for each prefix
tree node instead of each new path. In this way, we speed
up the path searching process by using precomputed
deviation paths.

3) We prove that our algorithm runs in time complexity
O(n log n + k log k), where n is the size of the circuit
graph and k is the number of paths generated. This
is asymptotically smaller than OpenTimer’s O(n2k)



algorithm and the state-of-the-art O(nk) algorithm based
on suffix forest.

We have evaluated our algorithm on a set of industrial
designs and compared it with two state-of-the-art algorithms,
OpenTimer [5] and the suffix forest algorithm [9]. The results
show that our algorithm outperforms OpenTimer [5] up to 60×
faster, and the CPU implementation of suffix forest algorithm
[9] up to 1.8× faster. Our algorithm provides a significant
enhancement to the previous algorithms in both theoretical
and practical aspects.

The rest of this paper is organized as follows. Section II
introduces the background of path searching in STA and
its problem formulation. Section III presents details of our
algorithm. Section IV demonstrated the experimental results.
Finally, Section V concludes the paper.

II. PRELIMINARIES

A. Path Searching in Static Timing Analysis

In STA, a circuit is represented as a directed acyclic
graph (DAG), where nodes denote pins and edges denote
interconnections between pins. In the circuit graph, there are
flip-flops (FF) driven by a common clock source through a
clock network. To account for process variations, the edges in
the circuit graph are annotated with a minimum delay and a
maximum delay, which is called the early/late split model.

In path-based STA, the input pins of FFs are called timing
endpoints. A timing path starts from the clock source and
then goes through a launching FF, and finally ends at the
timing endpoint of a capturing FF. In setup checking, a longer
path indicates slow signal propagation, which may make the
signal arrives late at its timing endpoint. In hold checking, a
shorter path indicates fast signal change which may interfere
with the last signal at the capturing FF. The slack value of a
path quantifies how much a timing path violates a setup/hold
constraint, which is defined as follows [1]:

slacksetup = ratlate − atlate,

slackhold = atearly − ratearly,

where slacksetup/hold denotes respectively the setup/hold slack
of a path, atearly/late denotes the signal arrival time at the
timing endpoint, and ratearly/late denotes the required arrival
time at the timing endpoint.

In the above definition, negative slacks indicate timing
violations. To evaluate the timing correctness of the circuit
under different circumstances, we are interested in the top-k
paths with the smallest slacks. The required arrival time is
only related to the setup/hold constraint settings and the clock
period, which are constants with respect to timing endpoints.
Therefore, we are interested in paths to each timing endpoint
that have the earliest/latest signal arrival times. Equivalently,
the task is to find the top-k shortest/longest paths on the delay-
annotated circuit graph.

1

2 3 4 5

6 7 8 9

10

1

2 3 4 5

6 7 8 9

10

Path Encoding
1,3,6,10 {}
1,3,8,10 (3,8)
1,4,8,10 (1,4),(4,8)
1,2,7,10 (1,2),(2,7)

Fig. 1: Illustration of the relation between paths and the suffix
tree. In the top figure, the solid lines represent the suffix
tree. In the bottom table, we give path examples which are
represented as a series of non-suffix-tree edges.

{}

(1,2) (1,4) (1,5) (3,7) (3,8)

(2,7) (4,7) (4,8) (5,8)

Fig. 2: The prefix tree corresponding to Figure 1. The root
node is followed by all non-tree edges in suffix tree. Other
nodes are succeeded by their reachable edges on the suffix
tree. On this prefix tree, the shortest path “1,3,6,10” is the
root node, the path “1,3,8,10” is the rightmost node, and the
path “1,4,8,10” is the third node on the bottom, etc.

B. Problem of the State-of-the-Art Path Searching Algorithm

In this section, we present the details of the state-of-the-art
path searching algorithm, OpenTimer [5] and suffix-forest [9],
and discuss their weaknesses. In these algorithms, the key data
structures are the suffix tree and the prefix tree. A suffix tree is
essentially a shortest-path tree rooted at the timing endpoint
T . Each path from a starting point S to T corresponds to
a unique sequence of deviation edges, which is illustrated
in Figure 1. A prefix tree is the search tree for such edge
sequences, as illustrated in Figure 2. The two complementary
data structures reduce the search space of path-based STA
because the edge sequence is a compact and effective way
to represent paths, which is suitable for searching. Efficient
dynamic programming approaches are used to construct the
suffix tree of a given circuit graph [4].

The path searching algorithm starts with the root of the
prefix tree, i.e. the shortest path. Then, it iteratively builds
the prefix tree by exploring an unvisited prefix tree node
with the shortest path length. The iteration continues until k
nodes are discovered, which are the top-k shortest paths. For
completeness, we show the pseudocode of the above process



in Algorithm 1.
In this path searching process, the central step is to find

all descendants of a prefix tree node, which we call path
expansion. This step is repeated for k times, and it may involve
a large number of prefix tree nodes, even many of them would
never contribute to the top-k paths. As the maximum number
of prefix tree nodes is proportional to the number of edges
in the graph, which is O(n), this step becomes the runtime
bottleneck of path searching.

Algorithm 1: Baseline top-k path searching algorithm.

1 q ← an empty min-heap of prefix tree nodes;
2 Push the root node {} into q;
3 for d = 1, 2, . . . , k do
4 x←Pop the current shortest path from q;
5 Output the path represented by prefix tree node x;
6 for s in successors of x do
7 Push s into q;

III. ALGORITHMS

To address the drawback of OpenTimer [5] and the suffix
forest algorithm [9], we need to avoid generating a large num-
ber of deviations each time we find a new path. Specifically,
instead of enumerating all of them iteratively, our algorithm
precomputes the deviations and arranges them into a heap. In
this way, each time we expand a new prefix tree node, all we
need to do is to link this heap into our solutions. The heaps of
deviations can be efficiently computed by incorporating their
inheritance relationship and can be iteratively built up on the
suffix tree.

The main process of our algorithm is shown in Algorithm 2.
We first compute the suffix tree of the circuit graph. Then,
we build heaps of deviations for all nodes on the suffix tree.
Finally, we traverse the prefix tree to find the top-k shortest
paths. Each step of our algorithm is explained in detail in the
following sections.

Algorithm 2: Find-k-Shortest-by-Heap(G, k)

1 compute suffix tree of graph G
2 for each node u in G do
3 Make-Heap(u)
4 Find-k-Shortest()

A. Deviation of an Edge
The suffix tree converts each path into a short sequence

of non-suffix-tree edges. Each non-suffix-tree edge makes
the path length larger by a certain amount. This amount is
independent of the path it is applied to. In path-based STA,
such a contribution is called deviation [4]. It is defined as
follows:

Definition 1. Let dist[u] denote the shortest distance from
node u to the sink T . The deviation of edge (u, v) is:

D(u, v) = −dist[u] + weight(u, v) + dist[v]

The independence of the deviation is shown in the following
theorem:

Theorem 1. For each path P from source node S to the sink
node T. Let (u1, v1), (u2, v2), . . . , (un, vn) be its correspond-
ing non-suffix-tree edges. Then the path length L(P ) is equal
to

L(P ) = dist[S] +
∑
i

D(ui, vi)

The detailed proof of Theorem 1 can be found in [4].
Since dist[S] is a path-independent constant, the deviation of
each edge indicates the contribution of this edge to the path.
Therefore, the value of a deviation D(u, v) can be used as a
ranking indicator and also as a weight for each node of the
prefix tree.

B. Persistable Heaps

Persistable heap supports basic heap operations: push,
pop, top and merge. For any of these operations, the
persistent heap algorithm does not modify the heap in place,
but generates a new version of heap instead. Each operation
can take place both in the latest version and the previous ver-
sion. Many widely-used heaps have corresponding persistable
versions. In this work, we implement two different types of
heaps, leftist tree and skew heap. The leftist tree is theoretically
mergeable and persistable. For a leftist tree of size m, the time
and space complexity of a merge operation is O(logm). The
skew heap is not theoretically persistable, because it has an
amortized time complexity based on potential analysis. For
a skew heap of size m, the time and space complexity of a
merge operation is O(m). However, in practice, the skew heap
runs very fast because it is rare to hit its runtime upper bound.
Because of its simple implementation, it has a smaller runtime
constant, making it another potential choice of heap we use
in our algorithm.

In this work, we only use the merge operation of persistable
heaps. The pseudocode for leftist tree operations can be found
in [11].

C. Prefix Tree Rearrangement

In our algorithm, we arrange all successors of a prefix tree
node into a precomputed heap. Each time we process a new
prefix tree node, we no longer enumerate all its successors, but
instead only link the heap roots to our solutions. Analogously,
this can be seen as a rearrangement to the prefix tree topology.
For each node x, we rearrange all the successors into a heap
and connect the heap root to x. Since the successors are all
derived from an identical prefix, we build a small root heap
with deviation as the keyword. Figure 3 gives an example.

As long as we ensure that monotonicity in the prefix tree
preserves after the transformation, i.e., the path length of a
son must be longer than the parent, the path searching process
shown in Algorithm 1 is still correct for our new topology.

Theorem 2. After rearrangement, the number of successors
of each node is no greater than 3. And the tree after rear-
rangement satisfies monotonicity.



{}

(1,2)

(1,4) (1,5)

(3,7) (3,8)

(2,7)

(4,7)

(4,8)

(5,8)

{}

(1,2) (1,4) (1,5) (3,7) (3,8)

(2,7) (4,7) (4,8) (5,8)

Fig. 3: Rearrange successors into a heap. The structure of the
prefix tree is shown in the top figure. The root node of the
prefix tree represents the empty sequence. The successors of
the root node are arranged in ascending order from left to
right according to deviation. We arrange them in the form of
a heap to get the dashed box in the center of the bottom figure.
Similarly, the successors of the node (1, 4) are arranged in the
dashed box to the left. After rearrangement, the number of
successors of each node is no greater than 3, which is suitable
for enumeration.

Proof. There are at most 3 children of a node x, the left son,
the right son, and the link to the heap of x. According to the
properties of the heap, the path length of the son must be equal
to or greater than that of the father, so the monotonicity still
satisfies.

We denote the heap top of each node by Successor(x), and
Heap-Left(x), Heap-Right(x) are the heap children of node x.
The rearranged search algorithm is shown in Algorithm 3. In
Lines 6–9, instead of adding all the successors one by one to
the queue as in Algorithm 1, we only need to add the three
nodes mentioned in the Theorem 2.

Algorithm 3: Find-k-Shortest()

1 q ← createPriorityQueue()
2 Enque(q, {}) push the prefix tree root into the queue
3 for d = 1, 2, . . . , k do
4 x← Deque(q)
5 E(x)← compute the suffix encoding of x
6 output Convert-Suffix-Encoding-to-Path(E(x))
7 Enque(q, Successor(x))
8 Enque(q,Heap-Left(x))
9 Enque(q,Heap-Right(x))

D. Deviation Preprocessing

Although we can reduce the number of deviations by
arranging them into a heap, for each node, it takes O(n) time
to compute its deviations. To speed up this procedure, we take
the inheritance relationship of deviation on the suffix tree and
use persistable heaps to preprocess deviation in near-constant
time. In the following theorem, we give the successor rule,
which implies the inheritance relationship of deviations.

Theorem 3. Let x be a prefix tree node, and (u, v) be the
corresponding edge. A node y with corresponding edge (u′, v′)
is a successor of x if and only if:

1) u′ is the ancestor of v in the suffix tree.
2) (u′, v′) is non-tree edge in the suffix tree.

Theorem 3 states that the successors depends only on the
end points of the edge, that is, each node in the suffix tree
corresponds to a list of successors. And if two suffix tree node
are adjacent, their successor list are almost identical to each
other. Specifically, if x is the parent of y in the suffix tree, we
can obtain y’s successor list by adding the edges with endpoint
y to the list of x. We use persistable heaps to accomplish
this procedure. The details are shown in Algorithm 4. Since
persistable operations are memory intensive, for each node
x, we first build its connected edges into a binary heap, and
then persistently merge it with its parent in the suffix tree.
To demonstrate, Figure 4 gives an example. To obtain node
1’s heap, we first build the edge into a heap and merge it
persistently with 3’s heap.

Algorithm 4: Make-Heap(u)

1 if heap[u] has already been built then
2 return heap[u]
3 buffer← {}
4 for each edge (u, v) starting at u do
5 if (u, v) not in suffix tree then
6 buffer← buffer ∪ {(u, v)}
7 hp1← build buffer into a heap
8 hp2← Make-Heap(Suffix-Tree-Father(u))
9 heap[u]← Heap-Merge(hp1, hp2)

10 return heap[u]

E. Complexity Analysis

To justify the efficiency of our algorithm, we derive the
following theory results:

Theorem 4. The time complexity of the algorithm above is
O(n log n + k log k). Where n denotes the size of the circuit
graph and k denotes the number of paths generated.

Proof. The time complexity has three main parts, heap build-
ing, merging, and top-k path searching. Using the linear heap
building algorithm, it takes only O(n) time to build the heap.
The heap merge operation is performed at most O(n) times,
each time the heap size does not exceed n. Using persistable
heaps, the complexity of a merge operation is O(log n). So



+ =

3's heap

(3,7)

(3,8)

1's edge

(1,2)

(1,4) (1,5)

(1,2)

(1,4) (1,5)

(3,7) (3,8)

1's heap

Fig. 4: Build heap persistently. In the Make-Heap algorithm,
we have to calculate the heap corresponding to 1 node. First,
we find the father of node 1 in the suffix tree, node 3. Then
recursively build the heap of node 3. Next, we build a heap
from the edges starting at node 1. Finally, we merge them
together persistently to get the heap of node 1. Since it takes
only linear time to build a heap, building heaps first and then
merging can reduce the complexity.

the total time complexity is O(n log n). From Algorithm 3,
we can clearly find that the time complexity of finding the
k-shortest path is O(k log k).

And for space complexity, we have:

Theorem 5. The space complexity is O(n log n + k), where
n,k are defined as above.

Proof. The space complexity has two main parts, the per-
sistable heap, and the search queue. For the persistable
heap, the space complexity is equal to its time complexity,
O(n log n). For the search queue, there are at most 3k push
operations. So the size of the queue is O(k).

For common circuit designs, the number of nodes and
the number of edges will not differ too much. The symbol
n represents both the number of points and the number of
edges. As stated in the proof, our algorithm has a fairly good
asymptotic complexity.

F. Performance Optimizations

Since persistable data structures take a longer time to build
and require a lot of memory, we propose the following method
to optimize the performance of the algorithm:

Delayed heap building. We build the heap of node u when
we need to access its successor. With this optimization, we
won’t create useless heaps. Because in some cases, such as
designs with a large number of nodes, not all nodes exist in
the top-k shortest paths, this optimization can improve the
speed.

Memory pooling. When the size of the heap grows large,
dynamic memory allocation becomes very time-consuming.
We use memory pools to optimize node allocation. As the
heap size is O(n log n), we acquired α · n log n nodes each
time when the memory runs out.

IV. EXPERIMENTAL RESULTS

We implement our algorithm in C++ on top of the open-
source STA engine OpenTimer [5]. We conduct the experi-
ments on a 64-bit Linux machine with 40 cores Intel Xeon

CPU at 2.10 GHz and 512 GB memory. We compare our
algorithm with OpenTimer [5] and the suffix forest algorithm
in [9]. The suffix forest algorithm was proposed to run on
GPUs and we have reimplemented it on CPUs to compare it
with ours. We evaluate all algorithms on large industrial de-
signs from TAU contests [2], [3]. We address the performance
benefit under different numbers of paths, including 100, 100K,
and 1M, and different types of persistable heaps, including
skew heap and leftist tree. Each experimental configuration
is performed 10 times to obtain the average runtime. The
memory pooling parameter α in Section III-F is set to 1/1000.

Table I shows the detailed performance comparison across
the benchmarks. The size of the circuit designs is represented
in the number of endpoints and pins in the table. Among these
benchmarks, leon2, leon3 and netcard are three largest
ones, and the others are smaller to medium scale circuits. For
large-scale circuits, our algorithm has superior performance–
the number of successor nodes on the prefix tree is very
large, and optimizations on the enumeration of successors
become significant. For small and medium-sized circuits, such
as wb_dma, and vga_lcd, due to the larger runtime overhead
of the deviation preprocessing and persistable heap operations,
our algorithm runs mostly slower. However, such an overhead
is only a few hundred milliseconds, which is only a small
portion of the runtime.

Among different algorithms in Table I, OpenTimer’s orig-
inal algorithm is the least efficient, because it is the one
with O(n2k) worst asymptotic complexity. For example, at
100K paths, OpenTimer takes 218463 ms while leftist and
skew heaps take only 6275 ms and 5476 ms, respectively.
The difference between the suffix-forest algorithm and our
algorithm becomes apparent when the path amount becomes
large. For instance, at 100K paths, our algorithms are 1.25×
(leftist heap) and 1.11× (skew heap) faster; at 1M paths, our
algorithms are 1.67× (leftist heap) and 1.8× (skew heap)
faster. These discussions demonstrate that our algorithm re-
duces the time complexity significantly and does not introduce
excessive constants. This is achieved by the optimizations in
Section III-F.

Figure 5 compares the performance in two large circuit
designs, leon2 and leon3mp. The leon2 have about 4.3
million pins and the leon3mp have about 3.6 million pins.
As the number of paths increases, the gap among OpenTimer,
suffix-forest, and our persistable heap becomes apparent grad-
ually. At a path count of 1M, our algorithm is 60× faster than
OpenTimer and 1.8× faster than suffix-forest. These speed-ups
demonstrate the efficiency of our algorithm, which is able to
process an extremely large number of paths at only quasilinear
runtime with respect to the input size.

V. CONCLUSION

In this work, we propose a new path searching algorithm
that has asymptotically better time complexity in path-based
STA. Unlike other algorithms, which enumerate a large num-
ber of successor nodes in the prefix tree, we organize the
deviations of successors in the form of a heap, and only need



TABLE I: Performance comparison between skew heap, leftist heap, and no heap. The runtime values are in milliseconds.
Absolute runtime

num paths endpoints pin count 100 100K 1M
method OpenTimer leftist skew forest OpenTimer leftist skew forest OpenTimer leftist skew forest
wb dma 2439 25318 28 4 4 4 597 157 109 116 582 143 117 122
aes core 3748 193584 113 77 80 71 11361 884 869 935 52613 9658 9857 10430
b19 17684 1898669 609 212 219 169 86780 3247 3893 3757 799597 22313 25116 26515
des perf 25217 744603 281 86 83 68 15057 1427 1519 1523 52858 12551 12520 13647
vga lcd 66965 717311 537 68 66 54 12326 1378 1386 1735 44614 11026 10738 14276
netcard 163821 4862680 2218 601 573 451 91084 6140 6708 6914 291826 19269 20404 26739
leon3mp 178591 3688590 2370 703 689 590 151778 6025 5746 6704 473318 22855 22818 36992
leon2 232655 4332962 4469 1607 1481 1441 218463 6275 5476 6834 1009337 20792 19472 34572

Runtime ratio with suffix forest=1
num paths endpoints pin count 100 100K 1M
method OpenTimer leftist skew forest OpenTimer leftist skew forest OpenTimer leftist skew forest
wb dma 2439 25318 7.237 1.079 1.184 1.000 5.121 1.349 0.938 1.000 4.792 1.178 0.965 1.000
aes core 3748 193584 1.585 1.078 1.122 1.000 12.146 0.945 0.929 1.000 5.044 0.926 0.945 1.000
b19 17684 1898669 3.600 1.249 1.294 1.000 23.098 0.864 1.036 1.000 30.157 0.842 0.947 1.000
des perf 25217 744603 4.119 1.252 1.212 1.000 9.888 0.937 0.998 1.000 3.873 0.920 0.917 1.000
vga lcd 66965 717311 10.041 1.264 1.234 1.000 7.103 0.794 0.799 1.000 3.125 0.772 0.752 1.000
netcard 163821 4862680 4.922 1.333 1.270 1.000 13.173 0.888 0.970 1.000 10.914 0.721 0.763 1.000
leon3mp 178591 3688590 4.020 1.193 1.168 1.000 22.638 0.899 0.857 1.000 12.795 0.618 0.617 1.000
leon2 232655 4332962 3.102 1.116 1.028 1.000 31.966 0.918 0.801 1.000 29.195 0.601 0.563 1.000

OpenTimer: the OpenTimer’s original implementation[5], where no persistable heap and no suffix forest are used.
skew/leftist: our algorithm implementation using skew/leftist heap. forest: the CPU implementation of suffix forest algorithm [9].

103 105

num_paths

103

104

105

106

ru
nt

im
e 

(m
s)

leon2

103 105

num_paths

leon3mp

ours suffix-forest OpenTimer

Fig. 5: Runtime scalability with increasing path counts based
on the TAU contest benchmarks [2]. As the number of paths
increases, the gap between OpenTimer, suffix-forest and our
persistable heap algorithm becomes significant.

to enumerate a constant number of nodes at a time. At the
same time, we take the inheritance relationship of deviation
on the suffix tree and use persistable heaps to preprocess
deviation. We prove our algorithm has a runtime complexity
of O(n log n + k log k) which is asymptotically better than
the state-of-the-art OpenTimer [5] and the suffix-forest algo-
rithm [9]. Our future work shall focus on the parallelization
of our algorithm using techniques such as skip list [12] and
task parallelism [13] to incorporate efficient heterogeneous
parallelism. We also plan to combine the proposed path
searching algorithm with CPPR [14], [15] and demonstrate
its practicality in critical paths-driven EDA tasks like [16].

ACKNOWLEDGE

This work was supported in part by the National Sci-
ence Foundation of China (Projects No. 62004006 and No.
62034007), the National Science Foundation of USA (CCF-
2126672), and NumFOCUS Small Development Grant.

REFERENCES

[1] J. Bhasker and R. Chadha, Static timing analysis for nanometer designs:
A practical approach. Springer Science & Business Media, 2009.

[2] J. Hu, D. Sinha, and I. Keller, “TAU 2014 contest on removing common
path pessimism during timing analysis,” in Proc. ISPD, 2014, pp. 153–
160.

[3] J. Hu, G. Schaeffer, and V. Garg, “TAU 2015 contest on incremental
timing analysis,” in Proc. ICCAD. IEEE, 2015, pp. 882–889.

[4] T.-W. Huang and M. D. Wong, “UI-timer 1.0: An ultrafast path-based
timing analysis algorithm for CPPR,” IEEE TCAD, vol. 35, no. 11, pp.
1862–1875, 2016.

[5] T. Huang, G. Guo, C. Lin, and M. D. F. Wong, “OpenTimer v2: A New
Parallel Incremental Timing Analysis Engine,” IEEE TCAD, vol. 40,
no. 4, pp. 776–786, 2021.

[6] P.-Y. Lee, I. H.-R. Jiang, C.-R. Li, W.-L. Chiu, and Y.-M. Yang,
“iTimerC 2.0: Fast incremental timing and cppr analysis,” in Proc. IC-
CAD. IEEE, 2015, pp. 890–894.

[7] B. Jin, G. Luo, and W. Zhang, “A fast and accurate approach for common
path pessimism removal in static timing analysis,” in Proc. ISCAS.
IEEE, 2016, pp. 2623–2626.

[8] P.-Y. Lee, I. H.-R. Jiang, and T.-C. Chen, “Fastpass: fast timing path
search for generalized timing exception handling,” in Proc. ASPDAC.
IEEE, 2018, pp. 172–177.

[9] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “Gpu-accelerated path-
based timing analysis,” in Proc. DAC. ACM, 2021.

[10] J. Alman and V. V. Williams, “A refined laser method and faster matrix
multiplication,” in SODA 2021. SIAM, 2021, pp. 522–539.

[11] S. Cho and S. Sahni, “Weight-biased leftist trees and modified skip lists,”
Journal of Experimental Algorithmics (JEA), vol. 3, pp. 2–es, 1998.

[12] H. Sundell and P. Tsigas, “Fast and lock-free concurrent priority
queues for multi-thread systems,” Journal of Parallel and Distributed
Computing, vol. 65, no. 5, pp. 609–627, 2005. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731504002333

[13] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A
Lightweight Parallel and Heterogeneous Task Graph Computing Sys-
tem,” IEEE Transactions on Parallel and Distributed Systems (TPDS),
vol. 33, no. 6, pp. 1303–1320, 2022.

[14] Z. Guo, T.-W. Huang, and Y. Lin, “A provably good and practically ef-
ficient algorithm for common path pessimism removal in large designs,”
in Proc. DAC. ACM/IEEE, 2021.

[15] ——, “Heterocppr: Accelerating common path pessimism removal with
heterogeneous cpu-gpu parallelism,” in Proc. ICCAD. ACM/IEEE,
2021.

[16] J. Chen, H. Kando, T. Kanamoto, C. Zhuo, and M. Hashimoto, “A
multicore chip load model for pdn analysis considering voltage–current-
timing interdependency and operation mode transitions,” IEEE Transac-
tions on Components, Packaging and Manufacturing Technology, vol. 9,
no. 9, pp. 1669–1679, 2019.


