
EventTimer: Fast and Accurate Event-Based
Dynamic Timing Analysis

Zuodong Zhang†, Zizheng Guo‡, Yibo Lin ‡?, Runsheng Wang†, and Ru Huang†

†Institute of Microelectronics, Peking University, Beijing, China
‡CECA, CS Department, Peking University, Beijing, China

Abstract—As the transistor shrinks to nanoscale, the overhead
of ensuring circuit functionality becomes extremely large due
to the increasing timing variations. Thus, better-than-worst-case
design (BTWC) has attracted more and more attention. Many of
these techniques utilize dynamic timing slack (DTS) and activity
information for design optimization and runtime tuning. Existing
DTS computation methods are essentially a modification to the
worst-case delay information, which cannot guarantee exact
DTS and activity simulation, causing performance degradation
in timing optimization. Therefore, in this paper, we propose
EventTimer, a dynamic timing analysis engine based on event
propagation to accurately compute DTS and activity information.
We evaluate its accuracy and efficiency on different benchmark
circuits. The experimental results show that EventTimer can
achieve exact DTS computation with high efficiency. And it also
proves that EventTimer has good scalability with the circuit scale
and the number of CPU threads, which make it possible to be
used in the application-level analysis.

I. INTRODUCTION

With the continuous shrinking of semiconductor technology
nodes, non-ideal factors like process variations and transistor
aging start to introduce non-negligible static and dynamic
timing variations [1]–[4]. To guarantee the timing correctness
under a wide range of operating temperatures and voltages,
designers have to increase the guardband by lowering the per-
formance, as the widely-adopted static timing analysis (STA)
methodology relies on analyzing the worst-case scenarios and
imposes conservative constraints to the designs.

To recover the performance, better-than-worst-case design
(BTWC) has been proposed to relax the conservative de-
sign constraints, e.g., increasing the clock frequency or de-
creasing the voltage depending on the working scenarios
dynamically beyond the requirements from STA. A typical
BTWC methodology relies on the circuit- and application-
level analysis to predict/detect potential timing errors and
trying to avoid/correct such errors at runtime [5]–[9]. Some
other studies even exploit inherent application-level resilience
to tolerate timing errors [10]–[14], such as neural network
accelerators. These BTWC techniques usually go beyond static
timing information and leverage dynamic timing analysis
(DTA) to guide design optimization strategies like dynamic
voltage/frequency scaling (DVFS) and application-level fault
tolerance.

To obtain the dynamic timing information, the aforemen-
tioned studies usually first perform graph-based STA to ob-
tain the worst-case delay, and then delay-annotated gate-
level simulation with a post-processing step to obtain the
dynamic information. Eventually, they use the dynamic timing
information to guide the runtime optimization strategies. For
simplicity, we call this method graph-based DTA (GB-DTA).
However, such an approach is still too conservative because
graph-based STA yields inaccurate delay annotations due to its

?Corresponding author: yibolin@pku.edu.cn

pessimistic delay update [15]. Cherupalli et al [16] propose a
new graph-based algorithm to report the N-worst exercised
paths. Several recent works [12], [17], [18] adopt machine
learning to predict the timing error or dynamic delay of a
particular circuit, which have the potential to improve the
runtime of DTA. Garyfallou et al [19] propose to recalculate
the arrival time of switching activities based on the gate-level
simulation results to eliminate the pessimism of graph-based
STA. Their algorithm can only compute dynamic timing slacks
(DTS) without reporting toggled paths and switching activities,
while its dependency on external gate-level simulators also
limits the runtime scalability due to the large overhead from
reading temporary files (e.g., VCD files from ModelSim).

To effectively guide BTWC optimization, fast and accurate
DTA engines are needed. Therefore, in this paper, we propose
EventTimer, an event-based DTA engine that can calculate
DTS and switching activities fast and accurately. To the best
of our knowledge, EventTimer is the first parallel DTA engine
that does not suffer from the pessimistic graph-based assump-
tion. The major contributions of this work are as follows:

1) We propose EventTimer, a DTA framework with in-
tegrated logic simulation and timing analysis, which
does not need any gate-level simulation or external
activity information file. This feature makes EventTimer
available for large-scale circuits.

2) We propose a new event propagation algorithm, which
propagates events cell by cell with accurate timing
information in each cycle. The proposed algorithm can
provide finer scope to inspect the timing and activity
information of the internal nodes.

3) We propose a parallelization scheme across independent
simulation cycles, which enables EventTimer to gain
performance benefit from multi-core CPUs and complete
the analysis much faster. The results show that Event-
Timer can achieve 18-21× speedup with 32 threads.

4) We also develop a new test pattern generation method.
The results show that the proposed method can achieve
82%–100% coverage with a simulation of 100K input
vectors, which is up to 37% higher coverage than that
of the conventional test pattern generation method.

The rest of this paper is organized as follows. Section II
introduces the background of STA, DTA, and formulates the
problem. Section III presents details of the algorithm. Sec-
tion IV demonstrated the experimental results of our algorithm.
Finally, Section V concludes the paper.

II. PRELIMINARIES

A. Static Timing Analysis
There are two common STA methodologies, namely the

graph-based STA (GB-STA) and the path-based STA (PB-
STA). In GB-STA, the circuit netlist is modeled as a di-
rected acyclic graph (DAG), which is composed of nodes

Graph-based dynamic timing analysis

A

B
Z

at=0.1

slew=0.15

Load=10

𝒔𝒍𝒆𝒘𝑼𝟏/𝒁 = 𝑳𝑼𝑻𝑨→𝒁 𝒔𝒍𝒆𝒘 = 𝟎. 𝟐𝟓, 𝒍𝒐𝒂𝒅 = 𝟏𝟎 = 𝟎. 𝟐𝟐

A Z
U1 U2

at=0.4

slew=0.25

at=0.32

slew=0.22

at=0.52

slew=0.28

Load=10

𝒅𝒆𝒍𝒂𝒚𝑼𝟐/𝑨→𝑼𝟐/𝒁 = 𝑳𝑼𝑻𝑨→𝒁 𝒔𝒍𝒆𝒘 = 𝟎. 𝟐𝟐, 𝒍𝒐𝒂𝒅 = 𝟏𝟎 = 𝟎. 𝟐

(a)

Path-based static timing analysis

A

B
Z

at=0.1

slew=0.15

Load=10

𝒔𝒍𝒆𝒘𝑼𝟏/𝒁 = 𝑳𝑼𝑻𝑨→𝒁 𝒔𝒍𝒆𝒘 = 𝟎. 𝟏𝟓, 𝒍𝒐𝒂𝒅 = 𝟏𝟎 = 𝟎. 𝟏𝟑

A Z
U1 U2

at=0.4

slew=0.25

at=0.32

slew=0.13

at=0.44

slew=0.14

Load=10

𝒅𝒆𝒍𝒂𝒚𝑼𝟐/𝑨→𝑼𝟐/𝒁 = 𝑳𝑼𝑻𝑨→𝒁 𝒔𝒍𝒆𝒘 = 𝟎. 𝟏𝟑, 𝒍𝒐𝒂𝒅 = 𝟏𝟎 = 𝟎. 𝟏𝟐

(b)

Fig. 1: Input slew merge introduces pessimism in delay
calculation of GB-STA. (a) Graph-based static timing analysis.
(b) Path-based static timing analysis.

(primary ports and pins) and edges (timing arcs from cells and
nets). GB-STA typically contains two major phases, forward
propagation and backward propagation. Forward propagation
computes the timing information such as slew, delay, and
arrival time (at). Backward propagation computes the required
arrival time (rat).

GB-STA can calculate the whole timing graph and report
the top-1 critical path quickly [20]. However, it can introduce
pessimism because of the worst-case slew propagation. For
example, the slew propagation in GB-STA utilizes the worst
slew of input pins, as shown in Fig. 1(a). During a setup check,
the slew of the pin U1/Z would be computed assuming the
worst slew, i.e. slew at pin B, thus the slew of the pin U1/Z
will be overestimated. More importantly, the delay of all gates
in the latter such as U2 would be overestimated.

Different from GB-STA, the PB-STA only calculate the
delay of a particular path, so there is no need to merge the
input slews and the path delay calculated is more accurate
(Fig. 1(b)) [21], [22].

B. Dynamic Timing Analysis
No matter GB-STA or PB-STA is adopted, the reported

critical paths are only topologically, and STA cannot analyze
which input patterns may cause timing errors and estimate
the error rate. Therefore, BTWC optimization aims at relaxing
the conservative design constraints from STA by analyzing the
dynamic information, such as DTS, toggle rates of the critical
paths, etc. Fig. 2 shows an example that using DTA to optimize
the application-level DVFS strategies [6], [7], [23]. By using
DTA to estimate the minimum DTS, designers can find the
max frequency or minimum voltage for each application,
which can help develop the runtime DVFS strategies for better
performance or energy efficiency.

GB-DTA is a commonly adopted technique to estimate
such dynamic information. It leverages the annotated delay
information extracted from GB-STA together with gate-level
simulation to analyze the switching activities of the critical
paths. The major drawback for GB-DTA is that it can still
introduce pessimism due to the pessimistic delay from GB-
STA.

Input Vectors

Application

Analysis

Dynamic Timing

Analysis (DTA)

Netlist of

Function Unit

Minimum DTS 𝑓𝑚𝑎𝑥/𝑉𝑚𝑖𝑛

Fig. 2: Using DTA to optimize application-level DVFS strate-
gies.

Recently, there is a growing interest in using machine
learning to speedup GB-DTA. A typical approach is to build
fast machine learning models to predict the dynamic delay
or timing error rate [12], [17], [18]. More than 10× speedup
over GB-DTA has been reported with the machine learning
techniques.

C. Problem Formulation for Dynamic Timing Analysis
DTA usually estimates statistical information of delay and

activity in multiple cycles. The problem formulation of DTA
for a particular cycle is defined as following.

Problem. Given the state of all pins and a specific input
vector, simulate the switching activities of each internal node
with timing information, report the delay of a specific path
and the critical ones with the largest delay.

Definition 1. Event: a digital switching signal on a pin. The
at(arrive time) of an event is the time of occurrence relative
to the last clock. The slew of an event is the time token for
signal transition.
Definition 2. Toggled pin: a pin is toggled in a particular cycle
if the value of the pin changes in that cycle
Definition 3. Toggled path: a path is toggled in a particular
cycle if all the pins in the path toggle in that cycle
Definition 4. Critical endpoints: monitored timing endpoints
(flip-flop or output port) specified by users, generally are
the endpoints where timing violation may occur (both setup
violation and hold violation).
Definition 5. Critical subgraph: a subgraph which contain
all critical endpoints and all nets/gates related to the critical
endpoints.

In practice, we can support multi-cycle simulation by
performing the above single-cycle DTA repeatedly. Accurate
DTA essentially requires combining gate-level simulation and
timing analysis. One straightforward way is to leverage an
external gate-level simulator like ModelSim for the activity
information [19], but the large output VCD files and IO
overhead result in impractical runtime and disk usage.

Hence, a practical DTA tool must have integrated gate-level
simulation for the activity information and timing propagation
for scalable timing analysis.

III. ALGORITHM

In this section, we explain the details of the proposed
event-based DTA. We first give an overview of the proposed
event-driven DTA and then present some details. The overall
taskflow of the algorithm is shown in Fig. 3. The proposed
algorithm contains two steps: structure initialization and cycle-
by-cycle timing analysis.

Build timing graph G

Netlist
Critical

Endpoints

Liberty

Library

Build the critical

subgraph Gs

Levelization

Initialize the state of

all pins

Final
cycle ?

Clear the events of

all pins

Add input events

Forward events

propagation

Backward report the

toggled paths

End

Test Vectors

Fig. 3: The overall taskflow of EventTimer.

A. Structure Initialization
The structure initialization step is to prepare the necessary

data for timing propagation. In this step, we first read the
netlist and build the timing graph. Then, we prune the timing
graph and keep only the critical subgraph according to the
user-specified critical endpoints. The critical subgraph is the
minimum subgraph that contains all nodes on the fan-in cone
of the critical endpoints. Using the critical subgraph instead
of the whole timing graph can effectively reduce the runtime,
especially for hold time check, because it avoids updating the
timing information of the unnecessary gates/nets. Algorithm 1
shows the pseudocode of our critical subgraph building algo-
rithm. The algorithm starts at the critical endpoints (line 8),
then, adds fan-in nodes of the current nodes to the subgraph
recursively until encountering the input nodes (lines 3-5).

Algorithm 1: Build the critical subgraph.
Input: Timing graph G , critical endpoints EPTc

Output: the critical subgraph Gs

1 Function add node to subgraph (node n):
2 Gs.push(n);
3 if n.in degree! = 0 then
4 for node n ∈ fanin(n) do
5 add node to subgraph(n);
6 Gs← {};
7 for all critical endpoint ei ∈ EPTc do
8 add node to subgraph(ei);

After obtaining the critical subgraph, we levelize the graph
to build level-by-level dependencies of the gates for events
propagation. Finally, we finish the preparations for event prop-
agation by setting all primary inputs to zero and initializing
all pin states accordingly.

B. Cycle-by-Cycle Timing Analysis
The central step of EventTimer is the cycle-by-cycle timing

analysis, where we perform timing analysis between adjacent
cycles based on the test vectors. On each cycle, the task can
be divided into three main sub-steps: input events building,
event propagation, and path reporting.

1) Input Events Building: The first step is building the input
events based on the input vectors and add these events to the
corresponding input pins. First, we read the input vectors and

compares the value of each bit with the value of the previous
cycle. A changed value indicates that an event occurs on the
specific input. The slew of input event is the user defined
input slew, and the arrival time (at) of the event is the user
defined external delay plus a random disturbance, denoted
as input uncertainty. We offset the arrival time of input
pins by a random disturbance because of two reasons: 1)
Random disturbance imitates the stochastic behavior caused by
the input wire delay or the clock skew of the former flip-flops.
2) Random disturbance prevents the situation where two input
events of a gate arrive at the same time. Thus, it eliminates
the ambiguity in event propagation.

2) Event Propagation: In the second step, we propagate
the events level by level to the timing endpoints. Fig. 4 gives
an example to better describe the propagation algorithm. We
propagate the events through gates and nets level by level.
Specifically, we apply the propagation for net arcs and cell
arcs alternately.

A net has one input pin and multiple output pins. Nets
in effect only offset the arrival time of input events by a
propagation delay and do not change their slew values. We
first find all output pins of the net, and then calculates the
corresponding wire delay, and finally adds the events to the
output pins.

Event propagation through gates is more complex as it
involves logic simulation and look-up table query for delay
and output slew computation. Also, the process has to deal
with multi-input gates, where several input events coming from
different input pins may trigger output events.

Algorithm 2 presents the gate propagation process. We first
build a sorted list of all arrival times of input events (lines 4-6).
Then, we simulate the logic behavior of the gate and get the
gate output value in chronological order (lines 7-9). A toggled
output value indicates a new output event (lines 9-11). For each
output event that occurs, we compute the cell delay and output
slew based on the look-up table in standard cell libraries, and
add the event to the event list of the corresponding output pin
(lines 12-14).

After propagating all events in a cycle, we check the events
list of each output pin and filter the improper event pairs, e.g.,
the case that the arrival time of two events is too close. In this
case, it is more likely that the output signal will not change at
all. For example, the time interval of the first two events of pin
U6/S in Fig. 4 is smaller than the slew, which means neither
of these signal switchings will be completed. Therefore, these
output events will be removed from the events list.

3) Path Reporting: The final step is reporting the toggled
paths. The algorithm firstly accesses the events list of all
critical endpoints, and reports the at of the last event as
the path delay. Then, find the input pin and event which
triggered this event at the former level, and report it. Repeat
this operation until reaching the input pins. After reporting all
critical endpoints, the algorithm clears all the events and only
reserve the state of pins as the initial state for the simulation
of the next cycle.

C. Parallel Acceleration
As mentioned above, to analyze the statistical dynamic

information of a practical application, the number of cycles
to be simulated is extremely large (usually > 10M) [11]. To
accelerate the simulation, two speedup methods are proposed:
the first is the critical subgraph analysis which is already
mentioned in the previous section, and the second is the cycle
parallelism. The most time-consuming part of EventTimer is
the cycle-by-cycle timing analysis. Therefore, we utilize cycle
parallelism for acceleration.

U3

A

B
Z

A

B U1
Z

A
U4

Z

A

B

CI

CO

S
U6

U5

A

C

ZB

A
U7

Z

atU1/A=0.1

A
U2

Z

atU1/B=0.5

atU2/A=0.15

atU5/C=0.33

atU1/Z=0.2 atU1/Z=0.6

atU2/Z=0.25

atU6/CO=0.3

A

B

CI

CO

S
U6

1

1

0

A: {(at=0.2, slew=0.1, rising),

(at=0.6, slew=0.08, falling)}

B: {(at=0.25, slew=0.1, rising)}

Input events:

Arrive times of all input events T(U6) = { 0.2(A), 0.25(B), 0.6(A) }

Output events:

CO: {(at=0.3, slew=0.1, rising)}

S: {(at=0.3, slew=0.08, falling),

(at=0.35, slew=0.1, rising),

(at=0.7, slew=0.08, falling)}

Level 0 Level 1 Level 2 Level 3

1

0

1

atU7/Z=0.4

Filter

Fig. 4: The schematic of the events propagation. To briefly demonstrate the propagation algorithm, the wire delay is ignored
and all cell delay is assumed to be 0.1.

Algorithm 2: Propagate events through the gate.

1 Function propogate events gate(gate gi):
2 PINin ← get input pins(gi);
3 PINout ← get output pins(gi);
4 build a list of time T (gi) ;
5 T (gi)← get input event at(gi) ;
6 sort T (gi) and ensure that there are no two input

events with the same at;
7 for all time ti ∈ T (gi) do
8 find the corresponding input event event in;
9 get the states of input pins at time ti, and

calculate the output value;
10 for all pin pi ∈ PINout do
11 if state of pi changed then
12 build a output event event out;
13 event out.at = event in.at+

Cell delay(event in.slew, load);
14 event out.slew =

Cell slew(event in.slew, load);
15 add event out to the events list of pi;
16 filter the improper event pairs

1 Thread

Thread 0: 0~1000

2 Threads

Thread 0: 0~500
Thread 1: (500 - 1)~1000

n Threads

Thread 0: 0~1000/n

Thread 1: (1000/n - 1)~2000/n

. . .

Thread n: (1000(n-1)/n - 1)~1000

Total simulation cycles0 1000

0 1000

0 1000

Fig. 5: The cycle parallel scheme of EventTimer.

We divide the total number of cycles to be simulated into
n equal parts and assign them to n different threads for
execution. The rules for cycle division and thread assignment
are shown in Fig. 5. Note that there is a one-cycle overlap
between different parts, because the circuit takes one cycle

Netlist (.v) Graph-Based

STA

Standard

Delay File (.sdf)

Synthesis

Test Vectors

Standard

Cell Library

Path-Based

STA

Critical

Endpoints

Liberty

Library (.lib)

EventTimer
Gate-level

Simulation

.v .lib .v .sdf

Post

Processing

Waveform (.vcd)

Timing

Reports

Timing

ReportsCompare

Static Analysis Phase

Dynamic Analysis Phase

Fig. 6: Workflow to validate EventTimer.

to be in the state that it is supposed to be in. Using cycle
parallelism avoids complex netlist splitting algorithms, and
threads are executed independently, which results in better
acceleration.

D. Critical Pattern Generation
Test pattern generation is critical to the coverage of DTA.

Inspired by [24], we develop a delay-guided fuzzing-based
method to find the critical patterns (the input patterns that can
toggle the critical path). We define the input pattern as a pair of
the current input and the previous input: {x[t], x[t−1]}. Then,
we use EventTimer to calculate the delay of these inputs, and
find the top 5% critical patterns to generate new child patterns.
For new pattern generation, we perform random bit flipping
with a certain probability p to each bit in these critical patterns.
To speed up convergence while avoiding falling into local
optima, we use three different probabilities, each of which
will be used to generate one-third of the new patterns.

IV. EXPERIMENTAL RESULTS

We implemented EventTimer in C++ and conducted all the
experiments on a Linux machine with Intel Xeon E5-2650 at
2.20GHz and 64 GB RAM. AxBench benchmarks [25] are
adopted to validate the algorithm, containing function units
that are commonly used in embedded systems, from medium-
scale ALUs to large-scale multipliers [27]. The workflow of
the experiments is shown in Fig. 6, which consisting of two
phases, enabling us to compare with GB-STA, PB-STA, and

TABLE I: Top-1 path delay calculated by GB-STA, PB-STA, GB-DTA and EventTimer. In principle, the delay values from
EventTimer should not be larger than those from PB-STA, and should be less than those from GB-DTA. The results are
consistent with such theoretical analysis.

Benchmark [25] # Gates # I/O
Top 1 Path Delay (ns)

STA [26] DTA

GB-STA PB-STA GB-DTA [7], [8] EventTimer
Pessimism
Eliminated

brent.kung.16b 55 32/17 297.677 296.204 296.996 296.204 0.792
brent.kung.32b 201 64/33 534.335 531.189 534.338 531.189 3.149
kogge.stone.32b 151 64/33 569.107 567.157 568.974 567.158 1.816
multiplier.8b 227 16/16 336.076 335.258 334.459 333.13 1.329

mac.8b 251 33/17 402.894 401.567 402.892 401.566 1.326
multiplier.16b 882 32/32 684.941 682.895 623.712 611.299 12.413
multiplier.32b 3395 64/64 1263.871 1258.956 1054.098 1036.895 17.203

TABLE II: Coverage improvement of the proposed fuzzing-
based method.

Benchmark [25] Coverage Improv.
w/o Fuzzing w/ Fuzzing

brent.kung.16b 100% 100% -
brent.kung.32b 77% 100% 23%
kogge.stone.32b 80% 100% 20%
multiplier.8b 97% 99% 2%

mac.8b 100% 100% -
multiplier.16b 78% 90% 12%
multiplier.32b 45% 82% 37%

GB-DTA. In the static analysis phase, we use Synopsys Design
Compiler to synthesize the benchmark circuits. We then use
Synopsys PrimeTime [26] to perform GB-STA, report the
top-N critical paths, and generate the standard delay files
(SDF). Next, we turn on the path-based analysis option in
PrimeTime (later referred as PB-STA) to recalculate the path
delay of the top-N critical paths and report the top-N critical
endpoints as the monitored endpoints in the dynamic analysis
phase. We employ the open-source Nangate 15nm standard
cell library [28] recharacterized with a commercial 16/14nm
FinFET modelcard as the standard cell library.

In the dynamic analysis phase, we use two methods to
generate the input patterns: 1) randomly generate 100K test
vectors; 2) fuzzing-based method, i.e., each iteration produces
1K input vectors, and the maximum iteration is 100. The three
flipping probabilities are 2.5%, 5%, and 7.5%, respectively.
Then, we can have two methods to report the delay of each
cycle and the top-N critical paths: 1) adopt the GB-DTA
methodology [7], [8] that requires a post-processing program
(Python) to extract the delay from the VCD files generated by
the gate-level simulation (ModelSim); 2) use EventTimer. In
this way, we can compare the timing reports for the accuracy
of path delay calculation, and compare the logic outputs with
gate-level simulation to verify the logic functionality. In all the
experiments, we assume zero wire delays, since wire delay
models are orthogonal to this work and wire delays can be
precomputed from commercial tools like PrimeTime.

A. The Top-1 Path Delay
Table I shows the top-1 path delay of GB-STA, PB-STA,

GB-DTA and EventTimer. PB-STA is in general more accurate
than GB-STA. We expect the top-1 path delay calculated by

GB-DTA equal to or less than the result of GB-STA, depending
on whether the critical path is exercised during the simulation.
We also expect the top-1 path delay calculated by EventTimer
equal to or less than the result of PB-STA, as there should be
no pessimistic estimation in EventTimer.

From Table I, we can see that the results match our
expectations. The top-1 path delay values from GB-DTA are
no larger than those from GB-STA. The delay values from
EventTimer are no larger than those from PB-STA. These
results indicate that EventTimer produces reasonable delay
values. We need to mention that the pessimism of GB-STA
does not seem to be large in the experiments. This is because
the results are extracted from the front-end analysis ignoring
the wire delay, so the large slews in internal nodes of the
circuits are underestimated. For a real design with high fan-
outs and long wires, the pessimism introduced by GB-STA will
be much more severe, when taking the back-end information
into account.

Moreover, although not shown in the table, when comparing
EventTimer with GB-DTA, we observe that even though with
different delay values, the cycles in which the top-1 path is
toggled are the same, and the outputs of each cycle match,
which proves the correctness of EventTimer.

To evaluate the fuzzing-based method, we define the cover-
age of EventTimer as:

Coverage =
Top delay of EventTimer

Top delay of PB-STA
. (1)

Table II shows that the proposed fuzzing-based method can
achieve 82%–100% coverage, which is up to 37% higher than
that of the conventional method. It should be noted that the
proposed fuzzing-based method will only increase the runtime
by less than 10%, because the total number of simulation
cycles is the same.

It can also be seen that the fuzzing-based method has
found the critical patterns for most benchmarks, except for
the multiplier.16b and multiplier.32b. Even after
a very long search, the fuzzing-based approach still cannot
find an input pattern that could toggle the static critical
path reported by STA. This result is consistent with previous
experimental observations [6]. It may be because that the static
critical path cannot actually be toggled by any input pattern,
especially in complex circuits.

B. Parallel Acceleration and Runtime Comparison
Fig. 7(a) shows the multi-threading results of EventTimer.

The plot shows that EventTimer is almost linearly scalable

1 2 4 8 16 32
0

400

800

1200

1600

R
u

n
ti

m
e

 (
s

)

Number of Threads

1

2

4

8

16

A
c
c
e

le
ra

ti
o

n

(a)

1k 10k 100k 1M

1

10

100

1k

R
u

n
ti

m
e
 (

s
)

Simulation Cycles

 EventTimer
 GB-DTA [5], [6]

(b)

1k 10k 100k 1M

10M

100M

1G

10G

V
C

D
 F

il
e

 S
iz

e

 GB-DTA [5], [6]

Simulation Cycles

(c)

1k 10k 100k 1M

10M

100M

1G

M
a

x
 M

e
m

o
ry

Simulation Cycles

 EventTimer

 GB-DTA [5], [6]

(d)

Fig. 7: (a) Multi-threaded acceleration of EventTimer. (b) Total
runtime of EventTimer and GB-DTA for different number of
simulation cycles. (c) VCD file size at different simulation cy-
cles in GB-DTA. (d) Maximum memory used by EventTimer
and GB-DTA for different number of simulation cycles. The
benchmark is multiplier.16b.

with the number of CPU threads. The results on other bench-
marks are similar. In general, EventTimer can achieve 18-21×
speedup with 32 threads.

Then, we compare the runtime of EventTimer with that of
GB-DTA (Fig. 7(b)). The EventTimer is executed in parallel
with 32 threads. GB-DTA requires a gate-level simulation
with a post-processing program. The runtime of gate-level
simulation is comparable to that of EventTimer, while the
post-processing is very time-consuming, because generating
and analyzing the large VCD file introduces a significant
runtime overhead (Fig. 7(c)). Eventually, EventTimer is 6.9×
faster than GB-DTA. Fig. 7(d) shows that the maximum
memory used by EventTimer is similar to GB-DTA, because
EventTimer only records the states of the last cycle.

V. CONCLUSION

In this paper, we present EventTimer, an integrated simu-
lation and timing analysis framework. EventTimer simulates
the switching activities by forward events propagation, and
performs timing analysis by backward path reporting. Event-
Timer adopts cycle parallelism, which makes it well scalable
with the number of CPU threads. We compare the DTA results
from EventTimer and the conventional GB-DTA, proving that
EventTimer does not suffer from the pessimistic graph-based
assumption and can calculate the path delay accurately. Our
future work includes taking account timing variation caused by
process variation into EventTimer, and estimating the timing
error rate for low-power near-threshold applications.

ACKNOWLEDGE

This work is supported in part by the National Key R&D
Program (2020YFB2205500), NSFC (62034007, 62004006,
62125401), and 111 Project (B18001).

REFERENCES

[1] R. Huang, X. Jiang, S. Guo, P. Ren, P. Hao, Z. Yu, Z. Zhang, Y. Wang,
and R. Wang, “Variability-and reliability-aware design for 16/14nm and
beyond technology,” in Proc. IEDM, 2017, pp. 12.4.1–12.4.4.

[2] Z. Ji, H. Chen, and X. Li, “Design for reliability with the advanced
integrated circuit (ic) technology: challenges and opportunities,” Science
China Information Sciences, vol. 12, 2019.

[3] Z. Zhang, R. Wang, X. Shen, D. Wu, J. Zhang, Z. Zhang, J. Wang,
and R. Huang, “Aging-aware gate-level modeling for circuit reliability
analysis,” IEEE TED, vol. 68, no. 9, pp. 4201–4207, 2021.

[4] J. Chen, H. Kando, T. Kanamoto, C. Zhuo, and M. Hashimoto, “A
multicore chip load model for pdn analysis considering voltage–current-
timing interdependency and operation mode transitions,” IEEE TCPMT,
vol. 9, no. 9, pp. 1669–1679, 2019.

[5] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: a low-power
pipeline based on circuit-level timing speculation,” in Proc. MICRO,
2003, pp. 7–18.

[6] H. Cherupalli, R. Kumar, and J. Sartori, “Exploiting dynamic timing
slack for energy efficiency in ultra-low-power embedded systems,” in
Proc. ISCA, 2016, p. 671–681.

[7] J. Constantin, L. Wang, G. Karakonstantis, A. Chattopadhyay, and
A. Burg, “Exploiting dynamic timing margins in microprocessors for
frequency-over-scaling with instruction-based clock adjustment,” in
Proc. DATE, 2015, pp. 381–386.

[8] I. Tsiokanos, L. Mukhanov, and G. Karakonstantis, “Low-power
variation-aware cores based on dynamic data-dependent bitwidth trun-
cation,” in Proc. DATE, 2019, pp. 698–703.

[9] K. Wang, Z. Xiong, L. Chen, P. Zhou, and H. Shin, “Joint time delay and
energy optimization with intelligent overclocking in edge computing,”
Science China Information Sciences, vol. 63, pp. 1–16, 2020.

[10] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in Proc. DAC, 2013.

[11] O. Assare and R. Gupta, “Accurate estimation of program error rate for
timing-speculative processors,” in Proc. DAC, 2019.

[12] J. Zhang and S. Garg, “Fate: Fast and accurate timing error prediction
framework for low power dnn accelerator design,” in Proc. ICCAD,
2018, pp. 1–8.

[13] J. Zhang, K. Rangineni, Z. Ghodsi, and S. Garg, “Thundervolt: Enabling
aggressive voltage underscaling and timing error resilience for energy
efficient deep learning accelerators,” in Proc. DAC, 2018.

[14] X. Li, G. Yan, J. Ye, and Y. Wang, “Fault tolerance on-chip: a reliable
computing paradigm using self-test, self-diagnosis, and self-repair (3s)
approach,” Science China Information Sciences, vol. 61, pp. 1–17, 2018.

[15] J. Bhasker and R. Chadha, Static timing analysis for nanometer designs:
A practical approach. Springer Science & Business Media, 2009.

[16] H. Cherupalli and J. Sartori, “Scalable n-worst algorithms for dynamic
timing and activity analysis,” in Proc. ICCAD, 2017, pp. 585–592.

[17] X. Jiao, A. Rahimi, Y. Jiang, J. Wang, H. Fatemi, J. P. de Gyvez,
and R. K. Gupta, “Clim: A cross-level workload-aware timing error
prediction model for functional units,” IEEE Transactions on Computers,
vol. 67, no. 6, pp. 771–783, 2018.

[18] X. Jiao, D. Ma, W. Chang, and Y. Jiang, “Tevot: Timing error modeling
of functional units under dynamic voltage and temperature variations,”
in Proc. DAC, 2020, pp. 1–6.

[19] D. Garyfallou, I. Tsiokanos, N. Evmorfopoulos, G. Stamoulis, and
G. Karakonstantis, “Accurate estimation of dynamic timing slacks using
event-driven simulation,” in Proc. ISQED, 2020, pp. 225–230.

[20] Z. Guo, T.-W. Huang, and Y. Lin, “Gpu-accelerated static timing
analysis,” in Proc. ICCAD. IEEE Press, November 2020.

[21] G. Guo, T.-W. Huang, Y. Lin, and M. Wong, “Gpu-accelerated critical
path generation with path constraints,” in Proc. ICCAD, Virtual Confer-
ence, November 2021.

[22] Z. Guo, T.-W. Huang, and Y. Lin, “A provably good and practically ef-
ficient algorithm for common path pessimism removal in large designs,”
in Proc. DAC, San Francisco, CA, December 2021.

[23] M. S. Golanbari, A. Gebregiorgis, F. Oboril, S. Kiamehr, and M. B.
Tahoori, “A cross-layer approach for resiliency and energy efficiency in
near threshold computing,” in Proc. ICCAD, 2016, pp. 1–8.

[24] D. Ma, X. Zhang, K. Huang, Y. Jiang, W. Chang, and X. Jiao,
“Devot: Dynamic delay modeling of functional units under voltage and
temperature variations,” IEEE TCAD, pp. 1–1, 2021.

[25] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran,
“Axbench: A multiplatform benchmark suite for approximate comput-
ing,” IEEE Design Test, vol. 34, no. 2, pp. 60–68, 2017.

[26] “Synopsys PrimeTime,” http://www.synopsys.com.
[27] M. Brandalero, A. C. S. Beck, L. Carro, and M. Shafique, “Approximate

on-the-fly coarse-grained reconfigurable acceleration for general-purpose
applications,” in Proc. DAC, 2018, pp. 1–6.

[28] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech,
and J. Michelsen, “Open cell library in 15nm freepdk technology,”
in Proc. ISQED. New York, NY, USA: Association for Computing
Machinery, 2015, p. 171–178.

