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Abstract—Common path pessimism removal (CPPR) is imper-
ative for eliminating redundant pessimism during static timing
analysis (STA). However, turning on CPPR can significantly
increase the analysis runtime by 10–100× in large designs. Recent
years have seen much research on improving the algorithmic
efficiencies of CPPR, but most are architecturally constrained
by either the speed-accuracy trade-off or design-specific pruning
heuristics. In this paper, we introduce a novel CPPR algorithm
that is provably good and practically efficient. We have evaluated
our algorithm on large industrial designs and demonstrated
promising performance over the current state-of-the-art. As an
example, our algorithm outperforms the baseline by 36–135×
faster when generating the top-10K post-CPPR critical paths on
a million-gate design. At the extreme, our algorithm with one core
is even 4–16× faster than the baseline with 8 cores. Our algorithm
also outperforms the commercial STA engine PrimeTime up to
26.99× faster. By exploiting parallelism within the circuit graph,
we can reduce the memory consumption of our algorithm by
30%, with only 3% runtime increase.

Index Terms—static timing analysis, STA, CPPR

I. INTRODUCTION

Static timing analysis (STA) is a pivotal step in the overall
design flow [1]. The predominant approach creates early and
late bounds on each signal delay. However, this early/late
timing split causes the analysis to be artificially pessimistic
due to analyzing only the worst-case scenarios. Unnecessary
pessimism will lead tests to be marked failing whereas in
actuality they should be passing. Designers and optimization
tools might be misled into an over-pessimistic timing report,
leading to unnecessary increases in design turnaround time and
cost. To this end, common path pessimism removal (CPPR) is
imperative for eliminating redundant pessimism during STA.
Figure 1 gives an example. Prior to CPPR, data path 2 can be
more critical than data path 1, but the result may change after
CPPR because the common path pessimism 2 is larger than
pessimism 1. However, this process of pessimism removal is
extremely time-consuming because we need to analyze timing
path by path across all flip-flop (FF) pairs. According to [2],
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generating a complete timing report with CPPR incurs 10-
100× more runtime and memory.

The recent years have seen several research work and
algorithms to reduce the long runtimes of CPPR. For instance,
the TAU community has organized contests to seek new ideas
for accurate and fast CPPR algorithms [3], [4]. iTimerC [5]
employs a branch-and-bound technique to prune the search
space of path generation. HappyTimer [6] designs a block-
based algorithm with an alternative delay metric to remove
pessimism during the timing update. OpenTimer [7], [2]
introduces a dual data structure to remove path pessimism
and parallelize the process across independent FFs. There is
also research on improving memory consumption of CPPR [8],
[9]. Other approaches such as tag-based updates and modified
delay models have been applied in commercial tools [4]. A
fundamental challenge is that existing algorithms encounter
large time and space complexities proportional to the product
of FF count and the graph size, because they may end up
enumerating all possible FF pairs for CPPR. As a result, even
introducing speed-accuracy trade-off or design-specific prun-
ing heuristics cannot guarantee consistent, decent performance
in large designs.

In this paper, we introduce a novel provably good and prac-
tically efficient CPPR algorithm for analyzing large designs.
We summarize three technical contributions of our work:

1) First, instead of enumerating all possible FF pairs, we
identify lowest common ancestors (LCA) that incur
common path pessimism on data paths, and process the
FF pairs in different LCA depth groups. Then, we design
an efficient distance tuple structure to deal with depth
constraints, largely reducing the search space of CPPR.

2) Second, we prove that the time complexity of our
algorithm is irrelevant to the number of FFs, but the
depth of the clock tree which is typically smaller by
orders of magnitude.

3) Third, our algorithm is highly parallelizable, both within
the circuit graph and across the depths of the clock tree.
The organization of parallelism across the clock tree
depths largely facilitates the adoption of multithreading
to gain further speed-up through multicore parallelism.
However, the drawback of this parallelism is that its
memory consumption is proportional to the number of
threads, because each thread works on a duplicate of
the circuit graph. By introducing parallelism within the
circuit graph, we can reduce the memory consumption
of our algorithm on multi-core CPUs without trading in
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Fig. 1: An example of CPPR impact. Before CPPR, data path
2 can be more critical than data path 1. However, the post-
CPPR slack of data path 2 can become less critical than data
path 1, as pessimism 2 is larger than pessimism 1.

much runtime.

We have evaluated our algorithm on large industrial designs
of millions of gates and compared our performance with three
state-of-the-art CPPR algorithms [2], [6], [5]. Our algorithm
significantly outperforms the baseline algorithms in runtime
and memory. For instance, when generating one post-CPPR
critical path, we are 3–23× faster. The difference becomes
even remarkable at a large path count. When generating
the top-10K post-CPPR critical paths, our algorithm is 36–
135× faster than the others, using only 2.5%–10.9% of their
memory. At the extreme, our algorithm of one core (single-
threaded parallelism) is even 4–16× faster than the baseline
of eight cores where performance scalability stagnates. By
exploiting parallelism both within the circuit graph and across
the depths of the clock tree, we can halve our memory
consumption while still being 29–104× faster in generating
the top-10K paths. We also compared our performance with
the commercial STA engine PrimeTime, where our algorithm
is 18.51× faster on generating top-1 critical path, and 26.99×
faster on generating top-10K critical paths.

The rest of the paper is organized as follows. Section II
describes the background and motivation; Section III explains
the detailed implementation; Section IV demonstrates the
results; Section V concludes the paper.

II. PRELIMINARIES

In STA, a circuit is represented as a directed acyclic
graph (DAG), where nodes denote pins and edges denote
interconnections between pins. FFs are driven by a clock
source through the clock tree. Each edge has an early and
a late bounds on the signal delay. A data path starts from a
launching FF or a primary input and ends at a capturing FF.
The delay of a path is the sum of the edge delays along the
path. We consider the setup and hold timing constraints [3],
[4]:

Definition 1. We denote oi, di as the respective clock pin and
the data pin of FF i. For a path p from o1 to d2, the setup
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Fig. 2: When fixing the depth of LCA to be 1, we only care
about these launching-capturing FF pairs: (c, d), (d, c), (a, b),
(a, e), (b, a), (b, e), (e, a), (e, b). We can then tell precisely
for each launching FF the pessimism it will introduce when
paired with any other capturing FF, namely the edges above
Level 1 colored yellow in the figure.

slack and the hold slack of p are defined as follows:

slack setup(p) = rat late(d2)− at late(d2)

= at early(o2) + Tclk − Tsetup − at late(o1)− delay late(p),

slack hold(p) = at early(d2)− rat early(d2)

= at early(o1) + delay early(p)− at late(o2)− Thold.
(1)

The definition of slack assumes a worst case of edge delays
for each test. However, it introduces unnecessary pessimism
because there can be a common segment between two clock
paths (see Figure 1). To remove the pessimism, we add a credit
to the slack as follows:

Definition 2. We define CPPR credit on clock tree node u as
credit(u) = at late(u) − at early(u). Each FF corresponds to a
clock tree leaf node. The credit for a path with launching FF
u and capturing FF v is thus credit(LCA(u, v)).

Then, the post-CPPR slack for a path p can be written as
[3], [4],

slack setup/hold
CPPR (p) = slack setup/hold(p)+credit(LCA(u, v)), (2)

where u = p.lauFF , v = p.capFF and slack setup/hold(p) is the
pre-CPPR slack. With the above definitions, we formulate the
common path pessimism removal problem as follows.

CPPR problem formulation [4]: Given a circuit graph
with updated delay values, timing constraints, and a number
k, report the top-k post-CPPR critical paths.

The key challenge of CPPR is that the credit is path-specific
and it depends on the launching and capturing FFs. Different
paths might have different credits to add to the slack, even if
they share the same launching or capturing FFs. Most previous
work enumerate all FF pairs to find post-CPPR critical paths
ended at a target capturing FF and then reduce the result to a
top-k set [5], [6], [2]. However, the main drawback is that these
algorithms may end up enumerating all FF pairs in the worst
case, requiring long analysis runtimes to complete CPPR.

III. ALGORITHMS

We propose a new CPPR algorithm to overcome the runtime
challenges of CPPR by enumerating the LCA depths of
launching FFs and capturing FFs, instead of a large amount of
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TABLE I: Notations of our Algorithms
Notation Description
D The number of clock tree levels.
atearly/late(u) Early/late arrival time for clock tree node u.
delayearly/late(u, v) Early/late delay for edge u → v.
credit(u) CPPR credit on clock tree node u.
depth(u) The depth of clock tree node u.
p.lauFF/capFF The launching/capturing FF node of path p.
fd(u) The ancestor of node u on clock tree with depth d.
LCA(u, v) The lowest common ancestor of u and v.
slack setup/hold(p) The pre-CPPR slack of path p.
slack setup/hold(p, d) The slack eliminating the pessimism up to level d.
slack

setup/hold
CPPR (p) The post-CPPR slack of path p.

P
setup/hold
d (k) Top-k path candidates at level d.

P
setup/hold
∗ (k) Top-k self-loop path candidates.

P
setup/hold
PI (k) Top-k primary input path candidates.

P
setup/hold
CPPR (k) Top-k paths ranked by post-CPPR slack.

FF pairs. Figure 2 illustrates our motivation. By fixing a depth
and then looking for all possible FF pairs pertaining to this
LCA depth, we are able to precisely remove the pessimism
and directly get the global top-k post-CPPR critical paths.

A. Definitions and Notations

Definition 3. We break the clock tree into levels at different
depths d and define d-Pessimism Removed slack of path p
as the pre-CPPR slack of path p eliminating the pessimism
above (i.e. up to) level d, precisely slack setup/hold(p, d) =
slack setup/hold(p) + credit(fd(p.lauFF )).

Apparently, we have slack setup/hold(p, 0) = slack setup/hold(p).
We rewrite Equation (2) as:

slack setup/hold
CPPR (p) = slack setup/hold(p, 0) + credit(LCA(u, v))

= slack setup/hold(p, depth(LCA(u, v))),
(3)

where u = p.lauFF , v = p.capFF .

Definition 4. We define the set of setup/hold path can-
didates at level d as setup/hold critical paths p that sat-
isfy these two constraints: 1) p.lauFF 6= p.capFF ; 2)
depth(LCA(p.lauFF , p.capFF )) ≤ d.

We define the top-k path candidates at level d as
P setup/hold
d (k), which are the top-k among the set of setup/hold

path candidates at level d, ranked by slack setup/hold(p, d).

Note that the second constraint requires depth ≤ d instead
of depth = d. This is important as it makes the fast retrieval
of P setup/hold

d (k) possible. This definition covers all top-k post-
CPPR paths p satisfying p.lauFF 6= p.capFF (see Lemma 1).

As Definition 4 does not cover paths that have p.lauFF =
p.capFF , we define another type of path candidates as follows:

Definition 5. We define self-loop paths as paths that
satisfy p.lauFF = p.capFF . We define top-k self-
loop path candidates as P setup/hold

∗ (k), which are the
top-k among all setup/hold critical paths ranked by
slack setup/hold(p, depth(p.lauFF )).

Note that in Definition 5, a self-loop path candidate
is not necessarily a self-loop path, as we consider both

self-loop paths and non-self-loop paths and rank them
by slack setup/hold(p, depth(p.lauFF )). We shall show (in
Lemma 2) that this definition still covers all self-loop paths
present in the global top-k post-CPPR paths. The above
definitions are for paths that originate from a FF. We also
consider paths that originate from a primary input pin:

Definition 6. We define top-k primary input path candidates
as P setup/hold

PI (k), which are the top-k among all setup/hold
critical paths that originate from a primary input, ranked by
their slacks. Paths that originate from primary inputs do not
have pessimism to remove.

B. The Overall Algorithm

The overall algorithm is presented in Algorithm 1. The
algorithm consists of two stages: path candidates generation
and top paths selection. We generate path candidates based
on enumeration of the depth of LCA between launching FF
and capturing FF (line 2), self-loop path candidates (line 3)
and primary input path candidates (line 4). A total of up to
k(D + 2) path candidates are generated, of which kD are
path candidates at each level, k are self-loop path candidates,
and another k are primary input path candidates. After that,
we select the top-k of all path candidates with smallest post-
CPPR slack values (line 6), and output them. We elaborate on
the subroutines in more detail and prove the correctness in the
following subsections.

Algorithm 1: getPostCPPRPaths(k, mode=setup/hold)

1 for d = 0, 1, 2, ..., D − 1 do
2 Pmode

d (k)←getPathsAtLCALevel(d, k,mode);
3 Pmode
∗ (k)←getPathsFromSelfLoops(k,mode);

4 Pmode
PI (k)←getPathsFromPIs(k,mode);

5 paths ← [Pmode
0 (k), ..., Pmode

D−1 (k), P
mode
∗ (k), Pmode

PI (k)];
6 return Pmode

CPPR (k) =selectTopPaths(paths , k);

C. Generation of the Top-1 Path

We first propose an efficient algorithm to generate path
candidates for k = 1, including top-1 path candidates at each
level (Definition 4), top-1 self-loop path candidate (Definition
5) and top-1 primary input path candidate (Definition 6). This
algorithm will generalize to our top-k case. After generating
all top-1 path candidates, we can reduce them to the global
top-1 path using selectTopPaths.

We introduce a node grouping technique to find path
candidates at different levels (Definition 4). In Figure 3, we
demonstrate how node grouping helps us filter out paths that
are not path candidates. When generating path candidates at
level d, we group each node u satisfying depth(u) > d by
fd+1(u). Intuitively, we cut the tree between level d and level
d+1, and the tree below level d+1 breaks into pieces which
are formed as groups. The path constraints in Definition 4 are
equivalent to finding paths that connect two different groups,
i.e. fd+1(p.lauFF ) 6= fd+1(p.capFF ).

Algorithm 2 generates top-1 path candidates at level d (Def-
inition 4) with node grouping. The notations are summarized
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Fig. 3: Example of node grouping with d = 1 for hold
check. In this case, nodes are grouped using f2(u), forming
5 different groups, e.g., node x’s group is e, node a’s group
is a, etc. We disallow data paths that connect the same group,
i.e., that have fd+1(p.lauFF ) = fd+1(p.capFF ). Invalid data
paths are marked in red. All data paths are labeled with their
LCA depths. Each valid data path p in the figure satisfies
p.lauFF 6= p.capFF and LCA depth ≤ d.

TABLE II: Arrival time tuples on pin u for Algorithm 2.
Name Member Description

at(u)
time Earliest arrival time
from The previous node of the earliest path
groupid The group index of the first node of that path

at ′(u)
time Second earliest arrival time with a different groupid
from The previous node of that path
groupid The group index of the first node of that path

The above is for hold check. For setup check, replace ‘earliest’ with
‘latest’.

in Table II. We traverse the circuit graph to compute the
earliest (latest) arrival time tuples of each pin for hold (setup)
constraint. We keep two arrival time tuples, at(u) and at ′(u),
for each pin u. The at ′(u) serves as a fallback for at(u) when
at(u) is unavailable due to the node grouping requirement that
the capturing FF must have a different group index than the
launching FF.

First, we initialize the arrival time for Q-pins of FFs in the
arrival time arrays (lines 1-7). We offset the arrival time of
Q-pins by credit(fd(u)) (lines 4 and 6), because we are inter-
ested in slack setup/hold(p, d), as Definition 4 required. Then, we
propagate the arrival time tuples through a topological order
of the pins in the graph (lines 8-13). After that, we compute
slacks on each D-pin of FF (lines 14-24). For a FF with clock
pin u and D-pin v, we are interested in paths that end at v
and start at a Q-pin of another FF, whose clock pins reside
in a different group than u. We find the best of such path
using at(v) and at ′(v) in lines 17-18. Specifically, if at(v)
is a path that originates from a different group, we accept it;
if not, we accept the fallback, i.e., at ′(v). Finally, we select
the path with smallest slack setup/hold(p, d). This slack value is
computed in line 21 and 23, derived from Equation (1), with
D at = Q at(p.lauFF ) + delay(p).

Algorithm 3 finds self-loop path candidates (Definition 5).
As Definition 5 does not limit the range of paths as Definition

Algorithm 2: getPathsAtLCALevel(d, k = 1, mode)

1 for FF clock pin u with depth(u) > d do
2 v ← the Q-pin of u;
3 if mode = setup then
4 Q at ← at late(u) + delay late(u, v)− credit(fd(u));
5 else
6 Q at ← at early(u)+delay early(u, v)+credit(fd(u));
7 Update at(v) and at ′(v) with time = Q at , from = u,

groupid = fd+1(u);
8 for Circuit pin u in topological order do
9 for Edge u→ v do

10 if mode = setup then d ← delay late(u, v) ;
11 else d ← delay early(u, v) ;
12 Update at(v) and at ′(v) with

time = at(u).time + d, from = u,
groupid = at(u).groupid ;

13 Update at(v) and at ′(v) with
time = at ′(u).time + d, from = u,
groupid = at ′(u).groupid ;

14 for FF clock pin u with depth(u) > d do
15 v ← the D-pin of u;
16 Tsetup/hold ← the setup/hold constraint value;
17 if at(v).groupid = fd+1(u) then D at ← at ′(v).time

;
18 else D at ← at(v).time ;
19 if mode = setup then
20 Tclk ← clock period;
21 slack ← at early(u) + Tclk − Tsetup −D at ;
22 else
23 slack ← D at − (at late(u) + Thold);
24 Obtain one path with slack = slack ;
25 return path with smallest slack;

4 does, the algorithm is a simplified version of Algorithm 2,
where we do not maintain group indices or fallbacks for arrival
time tuples. First, we initialize the arrival time for Q-pins (lines
1-7). For self-loop path candidates, we need to rank paths by
slack setup/hold(p, depth(p.lauFF )), so we offset the arrival time
of Q-pins by credit(u). Then, we do arrival time propagation
(lines 8-12), slack computation (lines 13-21), and finally select
the path with smallest slack.

Algorithm 4 finds primary input path candidates (Definition
6). This algorithm is similar to Algorithm 3, except that we
initialize the arrival time of primary inputs in lines 1-3 rather
than the arrival time of Q-pins. There are no common paths
in primary input path candidates, so this time we do not offset
the arrival time.

D. Generation of Top-k Paths

We now present our algorithm for generating the top-k path
candidates where k > 1. We extend our algorithm for k = 1
to support generating k path candidates. We represent a path
implicitly using a list of deviation edges, and generate paths
progressively from previous paths, inspired by [10], [2]. We
demonstrate the idea of deviation edges in Figure 4. Adding a
deviation edge to a path will increase its slack, and we compute
the amount of increase using fallbacks provided by our arrival
time tuples. For brevity, we define:

at auto(u, gid) =

{
at(u), at(u).groupid 6= gid ,

at ′(u), at(u).groupid = gid .
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Algorithm 3: getPathsFromSelfLoops(k = 1, mode)

1 for FF clock pin u do
2 v ← the Q-pin of u;
3 if mode = setup then
4 Q at ← at late(u) + delay late(u, v)− credit(u);
5 else
6 Q at ← at early(u) + delay early(u, v) + credit(u);
7 Update at(v) with time = Q at , from = u;
8 for Circuit pin u in topological order do
9 for Edge u→ v do

10 if mode = setup then d ← delay late(u, v) ;
11 else d ← delay early(u, v) ;
12 Update at(v) with time = at(u).time + d,

from = u;
13 for FF clock pin u do
14 v ← the D-pin of u;
15 Tsetup/hold ← the setup/hold constraint value;
16 if mode = setup then
17 Tclk ← clock period;
18 slack ← at early(u) + Tclk − Tsetup − at(v).time;
19 else
20 slack ← at(v).time − (at late(u) + Thold);
21 Obtain one path with slack = slack ;
22 return path with smallest slack;

Algorithm 4: getPathsFromPIs(k = 1, mode)

1 for Primary input pin u do
2 PI at ← the early/late arrival time of u for

mode=hold/setup;
3 Update at(u) and at ′(u) with time = PI at ,

from =N/A, groupid =N/A;
4 Propagate at(u) for circuit pin u in topological order, same

as Algorithm 3 line 8-12;
5 Obtain paths at FF clock pins, same as Algorithm 3 line

13-21;
6 return path with smallest slack;

The algorithm for generating top-k path candidates at level
d is presented in Algorithm 5. First, the arrival time arrays
at(u) and at ′(u) are computed in the same way as Algorithm
2. Then, paths with the smallest slack on each capturing FF are
pushed into a min-max heap [11] (lines 3-7), with computed
slacks the same as Algorithm 2. After that, we repeatedly pop
a path with minimal slack from the min-max heap, output
it, and then push all its deviations into heap again (lines 8-
20). We enumerate deviations by traversing backwards on the
path (the loop at line 12), and enumerate all incoming edges
for nodes on the path (the loop at line 14). For each deviation
edge, we compute its cost by equations at line 16 and 18. This
cost is always non-negative, because we are deviating from a
more pessimistic path to a less pessimistic one by introducing
a suboptimal edge. The resulting deviated path is pushed back
to the heap and the loop continues.

The algorithm for generating top-k self-loop path candidates
and top-k primary input path candidates is similar to Algo-
rithm 5, except that we do not add constraints to the group of
nodes. Specifically, we replace the occurrence of at auto(u, gid)
by at(u) and discard gid . All other code for maintaining the
heap and generating deviated paths is the same.

After getting all path candidates, we reduce them to the

Algorithm 5: getPathsAtLCALevel(d, k, mode)

1 Compute and propagate arrival time tuples, same as
Algorithm 2 lines 1-13;

2 H ← new Min-Max Heap of paths ranked by p.slack ;
3 for FF clock pin u with depth(u) > d do
4 v ← the D-pin of u;
5 constraint ← the setup/hold constraint value;
6 Compute smallest slack at v, same as Algorithm 2 lines

17-23;
7 Push one path p into H with p.slack = slack ,

p.groupid = fd(u), p.pos = v, p.devlist = [];
8 for i = 1 to k do
9 p← pop path with smallest slack from H;

10 Output path p as i-th smallest slack path candidate;
11 u← p.pos;
12 while u is not a clock tree node do
13 from ← at auto(u, p.groupid).from;
14 for edge w → u where w 6= from do
15 if mode = setup then
16 cost ← at auto(u, p.groupid).time −

at auto(w, p.groupid).time−delay late(w, u);
17 else
18 cost ← at auto(w, p.groupid).time +

delay early(w, u)−
at auto(u, p.groupid).time;

19 Push one path p′ into H with
p′.slack = p.slack + cost ,
p′.groupid = p.groupid , p′.pos = w,
p′.devlist = p.devlist + [w → u];

20 u← from;
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Fig. 4: Illustration of deviation edge and its effect. Assume
the shortest path to z′ is CLK → y, y → m,m → n, n →
p, p → z′. Deviation happens when we choose to go to p
from another direction r, and the deviation edge is r → p that
replaces n→ p in the original path. In the example, we can go
from a launching FF to r by two paths. When node grouping is
used, we do not consider the one tagged “bad path” because it
originates from d which is in the same group as the capturing
FF z′.

global top-k paths using Algorithm 6. We get paths with LCA
depth d from Pmode

d (k), self-loop paths from Pmode
∗ (k), and

primary-input paths from Pmode
PI (k). We discard other path

candidates that are not used (lines 5 and 8). We push the paths
into a heap and finally extract the top-k among them.

E. Parallelization

We now introduce two parallelization strategies of our
algorithm that exploit different types of parallelism of the
CPPR problem.
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Algorithm 6: selectTopPaths(paths , k)

1 [Pmode
0 (k), ..., Pmode

D−1 (k), P
mode
∗ (k), Pmode

PI (k)]← paths;
2 H ← new Min-Max Heap of paths ranked by p.slack ;
3 for d = 0, 1, 2, ..., D − 1 do
4 for path p in Pmode

d (k) do
5 if depth(LCA(p.lauFF , p.capFF )) = d then
6 Push p into H;
7 for path p in Pmode

∗ (k) do
8 if p.lauFF = p.capFF then
9 Push p into H;

10 for path p in Pmode
PI (k) do

11 Push p into H;
12 return top-k paths in H;

In parallelization strategy #1 (Section III-E1), we exploit
parallelism across different iterations (i.e. different clock tree
depths). This is our default parallel strategy which demon-
strates the best runtime performance on multi-core CPUs.
However, its memory footprint is proportional to the number
of the threads used to run the algorithm, because each thread
works on a duplicate of the circuit graph.

In parallelization strategy #2 (Section III-E2), we overcome
the memory issue of parallelization strategy #1 by seeking
parallelism within the circuit graph to be processed in each
iteration. By parallelizing within the circuit graph, all threads
work on the same circuit graph structure in memory. The
memory consumption is reduced as a result of the shared
circuit graph structure by multiple threads. However, this
parallelization strategy can introduce small runtime overhead,
because of the following reasons:

1) Tasks on graph nodes enumerate the input edges and
compute the arrival time tuples. This workload is small,
which makes it hard to fully utilize the CPU core.

2) The maximum number of tasks in parallel is limited by
the number of nodes in each level. For the levels at the
rear of the circuit, the number of nodes can be smaller
than the number of threads.

3) Scheduling and sychronization for parallelization across
circuit graph nodes is more complex than parallelization
across iterations, which introduces a larger runtime
overhead.

In Section III-E3, we combine the parallelization strategies
#1 and #2 by allocating threads among the two kinds of
parallelism. In this way, we can balance the runtime and
memory of our algorithm.

1) Parallelization Strategy #1: Exploit Parallelism across
Clock Tree Depths: In this parallelization strategy, each thread
computes the path candidates from one iteration (i.e. one clock
tree depth), as demonstrated in Figure 5. The main Algorithm
1 calls procedures getPathsAtLCALevel, getPaths-
FromSelfLoops, and getPathsFromPIs for a total of
D + 2 times. Each time we perform an iteration on the
graph, with the iterations independent of each other and
hence we can perform parallel iterations with T threads. The
selectTopPaths procedure can run iteratively, in which
each thread locks and updates the global heap once it finishes
one call.

CPU

T1��G �T0, d=0 ŏ

Fig. 5: Parallelization across clock tree depth; i.e., parallelize
the algorithm by putting different iterations onto different
threads.

The majority of runtime lies in the calls to getPaths-
AtLCALevel, getPathsFromSelfLoops, and get-
PathsFromPIs, while the runtime of iterative top path
selection is negligible. As a result, this strategy maximizes
the CPU parallelism.

2) Parallelization Strategy #2: Exploit Parallelism within
the Circuit Graph: In this parallelization strategy, each thread
computes the arrival time tuple for a single clock tree node,
as demonstrated in Figure 6. For each clock tree depth, we
initialize and propagate the arrival time tuples along the clock
tree and circuit DAG. The propagation on nodes can be
regarded as tasks with dependencies. We can put different
tasks onto different threads, provided that the dependencies
between tasks are not violated. This can be addressed by either
levelizing the task graph or using a dynamic scheduled parallel
programming framework like Taskflow [12], [?]. We describe
briefly the idea of levelization as follows.

We build the levelization of a DAG iteratively, by maintain-
ing a set of nodes called frontiers, denoted as F . The initial
frontiers are nodes that do not have input edges. We iteratively
discover the next frontiers F ′ from the current frontiers F , by
deleting all output edges from F and collect the nodes that
lose all input edges afterwards. The resulting levels are the
frontiers in each iteration. It is guaranteed that nodes within
the same level do not have mutual dependency, and they only
depend on nodes from previous frontiers. Thus, we process
levels one by one, and perform tasks within the same level in
parallel.

3) Hybrid Parallelization: We combine the advantages of
the above two parallelization strategies by parallelizing both
across clock tree depths and within a circuit graph, as il-
lustrated in Figure 7. We assign a group of threads to each
iteration (Threads 0, 1 in Figure 7 for iteration d = 0, Threads
2, 3 for iteration d = 1), and different iterations are computed
in parallel by different groups of threads. Within each iteration,
threads within the group propagate arrival time tuples on the
circuit graph in parallel.

Let Tw denote the number of threads within a group (i.e.,
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CPU

T0

T0

T1

T1

T0

T0

Fig. 6: Parallization within circuit graph; i.e., parallelize
the algorithm by distributing nodes to different threads while
preserving their dependency (through levelization or dynamic
scheduling), and processing the iterations one by one.

CPU

T2

T2

T3

T3

T2

T2

T0

T0

T1

T1

T0

T0

Fig. 7: Parallelize the algorithm by assigning each clock tree
depth a group of threads, each working on a batch of nodes.
This makes use of both inter-depth and intra-depth parallelism.

the number of threads to compute each iteration), and Tg

denote the number of groups (i.e., the number of concurrent
iterations). There are a total of T = Tw×Tg threads, working
on only Tg circuit graph instances in memory. When Tw = 1,
we only parallelize our algorithm across clock tree depths.
Similarly, when Tg = 1, we only parallelize our algorithm
within the circuit graph. Larger Tg introduces higher parallel
scalability across independent iterations, and larger Tw reduces
overall memory footprint, because we do not need to replicate
the clock graph when increasing it. By adjusting Tw and Tg ,
we can balance the runtime and memory of our algorithm,
and get the best performance within the memory budget of
independent situations.

F. Correctness and Complexity

The correctness of our algorithm is based on Lemmas 1-
3. We show in these lemmas that the global top-k post-CPPR

critical paths are covered by the three types of path candidates
(See Definitions 4-6 for the three types).

Lemma 1. For any path p ∈ Pmode
CPPR (k) with p.lauFF 6=

p.capFF and depth(LCA(p.lauFF , p.capFF )) = d, we have
p ∈ Pmode

d (k).

This lemma is derived from the fact that we rank path
candidates in Pmode

d (k) by optimistic slack values. Paths with
depth(LCA) < d are ranked with slacks larger than their
post-CPPR slacks. Paths with depth(LCA) = d are ranked
with exact post-CPPR slacks, and thus they will be top-k in
Pmode
d (k) as long as they are global top-k. The detailed proof

is presented below.

Proof. By contradiction. Suppose p 6∈ Pmode
d (k). Then for

any q ∈ Pmode
d (k), we have

slackmode(q, d) ≤ slackmode(p, d).

For path p, because depth(LCA(p.lauFF , p.capFF )) = d, we
have

slackmode
CPPR (p) = slackmode(p, d).

For any q ∈ Pmode
d (k), because

depth(LCA(q.lauFF , q.capFF )) ≤ d, we have

slackmode
CPPR (q) ≤ slackmode(q, d).

Combining the equations above, we get

slackmode
CPPR (q) ≤ slackmode(q, d) ≤ slackmode(p, d) = slackmode

CPPR (p).

That means every path q ∈ Pmode
d (k) has smaller post-CPPR

slack than p. There are a total of k paths in Pmode
d (k). Thus, p

cannot be ranked top-k in Pmode
CPPR (k), which is a contradiction.

Lemma 2. For any path p ∈ Pmode
CPPR (k) with p.lauFF =

p.capFF , we have p ∈ Pmode
∗ (k).

Proof. By contradiction. Suppose p 6∈ Pmode
∗ (k). Then for

any q ∈ Pmode
∗ (k), we have

slackmode(q, depth(q.lauFF )) ≤ slackmode(p, depth(p.lauFF )).

Whether or not q is a self-loop path, there must be
depth(q.lauFF ) ≥ depth(LCA(q.lauFF , q.capFF )), and
thus we have

slackmode
CPPR (q) ≤ slackmode(q, depth(q.lauFF )).

On the other side, p is a self-loop path by our assumption, and
thus

slackmode
CPPR (p) = slackmode(p, depth(p.lauFF )).

Combining the equations above, we get

slackmode
CPPR (q) ≤ slackmode(q, depth(q.lauFF ))

≤ slackmode(p, depth(p.lauFF ))

= slackmode
CPPR (p).

That means every path q ∈ Pmode
∗ (k) has smaller post-CPPR

slack than p. There are a total of k paths in Pmode
∗ (k). Thus, p

cannot be ranked top-k in Pmode
CPPR (k), which is a contradiction.
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Lemma 3. For any path p ∈ Pmode
CPPR (k) that originates from

a primary input rather than a launching FF, we have p ∈
Pmode

PI (k).

Proof. This one is apparent because every path q ∈ Pmode
PI (k)

originates from primary inputs and they are sorted by their
post-CPPR slacks.

The three lemmas draw the following correctness theorem,
which implies that we can obtain top-k post-CPPR paths from
the path candidates:

Theorem 1. With all the path candidates, selectTop-
Paths (Algorithm 6) correctly selects and returns global top-
k paths ranked by their post-CPPR slacks.

Proof. Because of Lemma 1, 2 and 3, we have encountered
every path that has the potential to become one of the global
top-k paths within the execution of Algorithm 6. By filtering
out paths that we do not want, every path appears at most once.
Thus, the global top-k paths can be obtained by selecting the
top-k of all kinds of path candidates.

For the correctness of our algorithms for finding path
candidates (Algorithm 5), we have the following lemma which
states the property of arrival time tuples.

Lemma 4. For any circuit pin v whose input edges are u1 →
v, u2 → v, ..., uk → v, by the definition of at(v) and at ′(v),
we have

at(v).time = min
1≤i≤k

at(ui).time + delayearly(ui, v),

at ′(v).time = min
1≤i≤k

atauto(ui, at(v).groupid).time

+ delayearly(ui, v).

This ensures that we can correctly propagate the two sets
of arrival time tuples using tuples on previous pins. The above
statements are for hold check. For setup check, one needs to
replace min by max, and early by late.

Proof. The first equation is obvious according to the optimal
substructure of shortest path on DAG. For the second one, the
right-hand side (RHS) gives a valid solution to the problem
defined by left-hand side (LHS), so we must have LHS≤RHS.
We assume LHS<RHS and prove by contradiction. Suppose
the shortest path given by LHS is from ui. Then the arrival
time of the path at ui must be smaller than both at(ui).time
and at ′(ui).time , and that contradicts the optimality of them.

This lemma draws the following correctness theorem for
our path candidates finding algorithm.

Theorem 2. Procedure getPathsAtLCALevel (Algorithm
5) correctly computes Pmode

d (k).

Proof. According to the way the algorithm assigns the arrival
time of launching FFs and capturing FFs, slack(p, d) is added
to the slack of path p in both modes. For every circuit pin v, the
algorithm maintains two sets of arrival time tuples, at(v) and
at ′(v), the latter of which serves as a fallback for the former.
From these two sets of arrival time, according to Lemma 4, we

can always find the shortest path (for hold check, longest path
for setup check) to v subject to any node grouping contraint.
Thus, the algorithm computes top-1 path candidate at level d
correctly.

For the correctness of top-k path finding, we represent each
path as a list of deviations from a shortest path. Since by
definition all paths can be regarded as a list of deviations
from a shortest path, it suffices to show that we find paths in
ascending order of their slacks. In other words, each deviation
introduces a non-negative increase on the slack of a path (the
cost in Algorithm 5 line 16, 18). For any circuit pin u and
group index gid ,

costhold =at auto(w, gid).time + delayearly(w, u)

− at auto(u, gid).time

for hold check, and

cost setup =at auto(u, gid).time − delay late(w, u)

− at auto(w, gid).time

for setup check are non-negative. This is obvious according to
Lemma 4 and the definition of at auto.

Finally, we conclude with the following theorem of overall
correctness.

Theorem 3. The overall Algorithm 1 outputs Pmode
CPPR (k) cor-

rectly.

Proof. The correctness of procedures getPathsFrom-
SelfLoops and getPathsFromPIs can be proved sim-
ilarly to Theorem 2. The correctness follows from Theorem
1.

For time and space complexity, we have the following
theorems:

Theorem 4. For k = 1, Algorithm 1 runs in O(nD) time
complexity.

Proof. The algorithm calls getPathsAtLCALevel D
times, getPathsFromSelfLoops once, and getPaths-
FromPIs once. Each of them consists of a single forward
propagation and constant times of enumeration on FFs. Thus,
they run in O(n) time. For k = 1, the selectTopPaths
procedure just selects the path with the smallest slack from at
most D + 2 paths, so it runs in O(D) time. As a result, the
overall algorithm runs in O(nD).

Theorem 5. For k > 1, Algorithm 1 runs in O(nDk log k)
time complexity.

Proof. In procedures getPathsAtLCALevel,
getPathsFromSelfLoops, and getPathsFromPIs,
the propagation of arrival time takes O(n). After that, we
pop paths from a min-heap for k times. Each time one path
is popped from the heap, and we scan for all its deviations
and push them into the heap. The count of deviations from
a single path cannot exceed the size of the graph, which is
n, and thus there are O(nk) heap operations. By using a
min-max heap, we are able to limit the size of the heap and
always keep the smallest k paths in the heap. In this way,



9

TABLE III: Benchmark statistics.
Benchmark #Edges #FFs D #FFs/D FF connectivity
vga lcdv2 449651 25091 56 448.05 28.55
Combo4v2 778638 26760 82 326.34 37.93
Combo5v2 2051804 39525 91 434.34 22.34
Combo6v2 3577926 64133 101 634.98 37.11
Combo7v2 2817561 54784 96 570.67 32.81
netcard iccad 3999174 97831 75 1304.41 196.42
leon2 iccad 4328255 149381 85 1757.42 1245.44
leon3mp iccad 3376832 108839 75 1451.19 489.06

each heap operation takes O(log k). As a result, each of the
three procedures runs in O(nk log k).

The selectTopPaths procedure selects the top-k paths
from at most k(D + 2) paths, which can be done in
O(kD log k). We conclude that the overall algorithm runs in
O(nDk log k).

Theorem 6. The algorithm runs with space complexity
O(Tg(n + k) + kp), where Tg denotes the number of thread
groups working on independent iterations, and p < n denotes
the average length of critical paths.

Proof. For every call to getPathsAtLCALevel, get-
PathsFromSelfLoops, and getPathsFromPIs, we
need O(n) of memory to store arrival time tuples for circuit
pins. We represent each path as a list of deviation edges.
Because deviation edges are added one by one, we do not
need to store all of them on a single path. Instead, we arrange
them in a prefix tree [2], where each path is denoted by a node
and each deviation edge is denoted by an edge, and thus we
need O(k) memory to store all the paths. Each thread group
has its own dedicated memory for working on a call. Thus, the
overall memory complexity is O(Tg(n + k)). The additional
O(kp) of memory is the size of the resulting global top-k
paths.

IV. EXPERIMENTAL RESULTS

We implemented our algorithm in C++ and evaluated the
performance of our algorithm on a 64-bit Linux machine
with 40 cores Intel Xeon CPU at 2.20 GHz and 960 GB
memory. We conducted experiments on large industrial designs
from TAU contests [3], [4], and their statistics are shown in
Table III. The levels of the clock trees are about 100 in all
benchmarks, 300–1700× smaller than the number of FFs.

We compare our approach with three state-of-the-art timers:
an open-source tool (OpenTimer [2]), and the TAU 2014
contest winners (HappyTimer [6] and iTimerC [5]). Since
HappyTimer and iTimerC are not open-source, we acquired
their executables directly from the authors. We also compare
our approach with the commercial STA engine PrimeTime.

A. Parallelization Strategy #1

We start by setting Tw = 1, i.e. no parallelization within
the circuit graph. As a result, T = Tg , which means that all
threads work on independent iterations. This is our default
parallelization strategy which demonstrates the best runtime
performance on multi-core CPUs. Table IV lists the overall

performance comparison. We measure the runtime and mem-
ory consumption on computing the global top-k post-CPPR
slacks on the designs listed in Table III where k=1, 100, 10K,
for both setup and hold tests. We tested our timer for both 1
and 8 threads, as it starts saturating at 8 threads. OpenTimer
and iTimerC are tested using 8 threads. HappyTimer is tested
using 1 thread because it does not support multi-threading.
We did not include accuracy metrics because our proposed
algorithm generates full accuracy results.

Our timer is faster than all baseline timers by at least
2.41×. The largest speedup of our timer with 8 threads
is 96.28× compared to OpenTimer, 217.51× compared to
HappyTimer, and 87.46× compared to iTimerC. Our timer
with a single thread can achieve up to 89.01× speedup
(Combo4v2, k=10K) compared to HappyTimer. The average
speedup ratios (baseline over ours), for k=1 are 22.69, 20.83,
and 3.28 compared to OpenTimer, HappyTimer, and iTimerC,
respectively. The ratios for k=10K are 51.80, 135.21, and
36.47, respectively. The large runtime gains come from the
fundamental difference of the time complexity. All baselines
can end up with enumerating all pairs of FFs (#FFs in Table
III), while our algorithm depends only on the depth of the
clock tree (D in Table III), which is 300-1700× smaller. These
results demonstrate the effectiveness and efficiencies of our
algorithm to reduce the long runtimes of CPPR.

Our algorithm with parallelization strategy #1 has a good
memory performance when generating a large number of
critical paths. For example, we reduce the memory consump-
tion for k=10K by 14.15×, 38.83×, and 9.14× compared to
OpenTimer, HappyTimer and iTimerC respectively. Although
we use more memory than OpenTimer when k ≤ 100, our
timer with 1 thread already outperforms OpenTimer up to
33.37× (leon2, k=10K) with very little memory overhead.
As we will show later, by exploiting parallelism within the
circuit graph (i.e. setting Tw > 1), we can get comparable
runtime while largely reduce memory consumption.

HappyTimer and iTimerC adopt design-specific pruning
heuristics and achieve good performance on designs (e.g.,
vga_lcdv2, leon3mp) with small k, but they do not scale
well to large k. For example, HappyTimer leverages the
sparsity of the connection between launching and capturing
FFs for pruning, but such an assumption fails at designs with
high “FF connectivity” (defined as the average number of
capturing FFs that can be reached from each launching FF).
As a result, it becomes extremely slow and memory-intensive
on large designs such as leon2 in Table III.

B. Parallelization Strategy #2 and Hybrid

We now test the performance when incorporating paral-
lelization strategies within the circuit graph. To conduct a
fair comparison, we fix the total number of threads T =
Tw×Tg = 8, and test the runtime and memory performance of
different (Tw, Tg) pairs. Table V lists the overall performance
comparison.

By increasing Tw and decreasing Tg , the runtime becomes
longer due to less parallel iterations and more parallelism
inside the circuit graph. However, the memory consumption
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TABLE IV: Performance comparison between OpenTimer (8 threads), HappyTimer (1 thread), iTimerC (8 threads) and ours
[13] (both 1 thread and 8 threads are tested) to find the top-k post-CPPR critical paths on large circuit designs.

Benchmark k
OpenTimer HappyTimer iTimerC Ours [13] OpenTimer HappyTimer iTimerC Ours [13]
8 Threads 1 Thread 8 Threads 8 Threads 1 Thread 8 Threads 1 Thread 8 Threads 8 Threads 1 Thread

RT Mem RT Mem RT Mem RT Mem RT Mem RTR MemR RTR MemR RTR MemR RTR MemR RTR MemR

vga lcdv2
1 18.05 0.25 13.12 1.74 9.85 0.84 3.90 0.37 7.98 0.17 4.63 0.67 3.36 4.66 2.53 2.24 1.00 1.00 2.05 0.46

100 18.19 0.26 29.10 6.20 10.30 0.88 3.51 0.37 7.89 0.17 5.18 0.69 8.29 16.62 2.93 2.35 1.00 1.00 2.25 0.46
10K 64.42 2.32 186.93 7.35 70.12 2.84 4.03 0.39 10.53 0.18 15.99 5.94 46.38 18.79 17.40 7.27 1.00 1.00 2.61 0.46

Combo4v2
1 37.72 0.46 31.89 2.20 25.61 2.12 6.89 0.66 14.62 0.31 5.47 0.70 4.63 3.35 3.72 3.23 1.00 1.00 2.12 0.47

100 36.76 0.49 50.73 8.75 64.69 2.19 6.30 0.66 14.76 0.31 5.83 0.74 8.05 13.34 10.27 3.33 1.00 1.00 2.34 0.47
10K 380.93 15.40 1583.48 52.84 636.72 10.08 7.28 0.68 17.79 0.32 52.33 22.57 217.51 77.47 87.46 14.78 1.00 1.00 2.44 0.47

Combo5v2
1 190.98 1.21 61.99 3.02 77.05 7.97 19.48 1.72 41.46 0.81 9.80 0.70 3.18 1.75 3.96 4.64 1.00 1.00 2.13 0.47

100 191.61 1.25 94.32 10.68 85.42 8.03 18.85 1.72 41.00 0.81 10.16 0.73 5.00 6.21 4.53 4.67 1.00 1.00 2.18 0.47
10K 831.84 27.34 2639.89 55.96 1009.92 15.60 20.25 1.75 50.38 0.82 41.08 15.66 130.36 32.06 49.87 8.93 1.00 1.00 2.49 0.47

Combo6v2
1 568.08 2.18 185.91 5.94 140.57 14.92 33.70 2.97 67.08 1.38 16.86 0.73 5.52 2.00 4.17 5.03 1.00 1.00 1.99 0.47

100 567.58 2.22 251.80 22.35 142.00 14.97 32.85 2.97 70.87 1.38 17.28 0.75 7.67 7.53 4.32 5.04 1.00 1.00 2.16 0.47
10K 1333.36 31.27 3037.02 59.56 961.51 26.04 33.85 2.98 77.89 1.39 39.39 10.48 89.72 19.96 28.41 8.73 1.00 1.00 2.30 0.47

Combo7v2
1 376.45 1.73 136.06 5.05 91.34 12.17 25.15 2.34 53.70 1.09 14.97 0.74 5.41 2.16 3.63 5.19 1.00 1.00 2.14 0.47

100 382.07 1.78 186.31 18.35 122.26 12.25 24.03 2.34 51.55 1.09 15.90 0.76 7.75 7.83 5.09 5.23 1.00 1.00 2.15 0.47
10K 1556.68 45.97 4992.00 108.33 1493.34 25.15 25.99 2.36 56.41 1.10 59.90 19.46 192.07 45.85 57.46 10.64 1.00 1.00 2.17 0.47

netcard
1 976.41 1.79 445.09 50.81 110.60 7.40 39.70 3.23 114.21 1.45 24.59 0.55 11.21 15.74 2.79 2.29 1.00 1.00 2.88 0.45

100 977.27 1.80 985.09 313.78 94.55 7.43 39.80 3.23 115.25 1.45 24.55 0.56 24.75 97.20 2.38 2.30 1.00 1.00 2.90 0.45
10K 2749.46 74.06 MLE MLE 582.47 17.42 41.59 3.25 116.67 1.46 66.11 22.82 MLE MLE 14.01 5.37 1.00 1.00 2.81 0.45

leon2
1 3131.08 2.12 4377.00 446.80 104.61 8.81 43.41 3.55 129.78 1.75 72.13 0.60 100.83 126.03 2.41 2.49 1.00 1.00 2.99 0.49

100 3131.73 2.13 MLE MLE 124.62 8.84 45.19 3.55 129.78 1.75 69.30 0.60 MLE MLE 2.76 2.49 1.00 1.00 2.87 0.49
10K 4320.00 41.81 MLE MLE 1177.35 45.30 44.87 3.56 129.47 1.75 96.28 11.74 MLE MLE 26.24 12.72 1.00 1.00 2.89 0.49

leon3mp
1 1017.85 1.63 1001.66 117.08 94.45 6.55 30.81 2.74 79.17 1.24 33.04 0.60 32.51 42.76 3.07 2.39 1.00 1.00 2.57 0.45

100 1013.06 1.63 MLE MLE 93.76 6.57 30.27 2.74 81.37 1.24 33.47 0.60 MLE MLE 3.10 2.40 1.00 1.00 2.69 0.45
10K 1348.55 12.48 MLE MLE 340.72 12.82 31.11 2.75 86.76 1.25 43.35 4.53 MLE MLE 10.95 4.65 1.00 1.00 2.79 0.45

Avg. Ratio
1 - 22.69 0.66 20.83 24.81 3.28 3.44 1.00 1.00 2.36 0.47

100 - 22.71 0.68 10.25† 24.79† 4.42 3.48 1.00 1.00 2.44 0.47
10K - 51.80 14.15 135.21† 38.83† 36.47 9.14 1.00 1.00 2.56 0.47

RT: Runtime in seconds. RTR: Runtime ratio. Mem: Memory in GB. MemR: Memory ratio. MLE: Memory limit exceeded (> 960 GB)
† Average ratios for HappyTimer are inaccurate as failure cases of HappyTimer on large designs are not included.

TABLE V: Runtime and memory comparison of our algorithm running with different (Tw, Tg) pairs, and OpenTimer with 8
threads. All pairs satisfy T = Tw × Tg = 8. The pair Tw = 1, Tg = 8 is the same as the 8-thread strategy [13] in Table IV.

Benchmark k
OpenTimer Ours Ours Ours Ours [13] OpenTimer Ours Ours Ours Ours [13]
8 Threads Tw=8, Tg=1 Tw=4, Tg=2 Tw=2, Tg=4 Tw=1, Tg=8 8 Threads Tw=8, Tg=1 Tw=4, Tg=2 Tw=2, Tg=4 Tw=1, Tg=8

RT Mem RT Mem RT Mem RT Mem RT Mem RT Mem RTR MemR RTR MemR RTR MemR RTR MemR

vga lcdv2
1 18.05 0.25 5.99 0.17 4.59 0.20 4.09 0.26 3.90 0.37 4.63 0.68 1.54 0.46 1.18 0.54 1.05 0.70 1.00 1.00

100 18.19 0.26 6.45 0.17 4.76 0.20 3.67 0.26 3.51 0.37 5.18 0.70 1.84 0.46 1.36 0.54 1.05 0.70 1.00 1.00
10K 64.42 2.32 8.51 0.18 5.82 0.21 4.71 0.27 4.03 0.39 15.99 5.95 2.11 0.46 1.44 0.54 1.17 0.69 1.00 1.00

Combo4v2
1 37.72 0.46 12.80 0.31 8.98 0.36 7.47 0.46 6.89 0.66 5.47 0.70 1.86 0.47 1.30 0.55 1.08 0.70 1.00 1.00

100 36.76 0.49 12.56 0.31 8.52 0.36 7.55 0.46 6.30 0.66 5.83 0.74 1.99 0.47 1.35 0.55 1.20 0.70 1.00 1.00
10K 380.93 15.40 16.88 0.32 10.74 0.37 8.55 0.48 7.28 0.68 52.33 22.65 2.32 0.47 1.48 0.54 1.17 0.71 1.00 1.00

Combo5v2
1 190.98 1.21 27.32 0.81 22.28 0.94 20.23 1.20 19.48 1.72 9.80 0.70 1.40 0.47 1.14 0.55 1.04 0.70 1.00 1.00

100 191.61 1.25 27.64 0.81 22.41 0.94 20.03 1.20 18.85 1.72 10.16 0.73 1.47 0.47 1.19 0.55 1.06 0.70 1.00 1.00
10K 831.84 27.34 32.77 0.82 24.28 0.95 21.25 1.22 20.25 1.75 41.08 15.62 1.62 0.47 1.20 0.54 1.05 0.70 1.00 1.00

Combo6v2
1 568.08 2.18 45.63 1.38 37.29 1.61 34.91 2.06 33.70 2.97 16.86 0.73 1.35 0.46 1.11 0.54 1.04 0.69 1.00 1.00

100 567.58 2.22 45.31 1.38 37.74 1.61 34.62 2.06 32.85 2.97 17.28 0.75 1.38 0.46 1.15 0.54 1.05 0.69 1.00 1.00
10K 1333.36 31.27 51.10 1.39 40.22 1.62 36.00 2.07 33.85 2.98 39.39 10.49 1.51 0.47 1.19 0.54 1.06 0.69 1.00 1.00

Combo7v2
1 376.45 1.73 36.45 1.09 29.31 1.27 26.77 1.63 25.15 2.34 14.97 0.74 1.45 0.47 1.17 0.54 1.06 0.70 1.00 1.00

100 382.07 1.78 36.01 1.09 29.62 1.27 27.04 1.63 24.03 2.34 15.90 0.76 1.50 0.47 1.23 0.54 1.13 0.70 1.00 1.00
10K 1556.68 45.97 42.02 1.10 31.98 1.28 28.18 1.64 25.99 2.36 59.90 19.48 1.62 0.47 1.23 0.54 1.08 0.69 1.00 1.00

netcard
1 976.41 1.79 48.44 1.46 42.13 1.71 39.24 2.22 39.70 3.23 24.59 0.55 1.22 0.45 1.06 0.53 0.99 0.69 1.00 1.00

100 977.27 1.80 49.99 1.46 42.13 1.71 39.30 2.22 39.80 3.23 24.55 0.56 1.26 0.45 1.06 0.53 0.99 0.69 1.00 1.00
10K 2749.46 74.06 54.98 1.46 45.44 1.72 40.85 2.23 41.59 3.25 66.11 22.79 1.32 0.45 1.09 0.53 0.98 0.69 1.00 1.00

leon2
1 3131.08 2.12 58.78 1.75 48.25 1.90 42.43 2.45 43.41 3.55 72.13 0.60 1.35 0.49 1.11 0.54 0.98 0.69 1.00 1.00

100 3131.73 2.13 58.89 1.75 47.76 1.90 43.84 2.45 45.19 3.55 69.30 0.60 1.30 0.49 1.06 0.54 0.97 0.69 1.00 1.00
10K 4320.00 41.81 64.99 1.75 51.35 1.91 44.78 2.47 44.87 3.56 96.28 11.74 1.45 0.49 1.14 0.54 1.00 0.69 1.00 1.00

leon3mp
1 1017.85 1.63 42.50 1.24 33.89 1.46 31.02 1.88 30.81 2.74 33.04 0.59 1.38 0.45 1.10 0.53 1.01 0.69 1.00 1.00

100 1013.06 1.63 42.17 1.24 34.40 1.46 31.11 1.88 30.27 2.74 33.47 0.59 1.39 0.45 1.14 0.53 1.03 0.69 1.00 1.00
10K 1348.55 12.48 47.95 1.25 36.89 1.47 32.52 1.90 31.11 2.75 43.35 4.54 1.54 0.45 1.19 0.53 1.05 0.69 1.00 1.00

Avg. Ratio
1 - 22.69 0.66 1.44 0.47 1.15 0.54 1.03 0.69 1.00 1.00

100 - 22.71 0.68 1.52 0.47 1.19 0.54 1.06 0.69 1.00 1.00
10K - 51.80 14.16 1.69 0.47 1.24 0.54 1.07 0.69 1.00 1.00

RT: Runtime in seconds. RTR: Runtime ratio. Mem: Memory in GB. MemR: Memory ratio. Tg , Tw follows our definition in Sect. III.

is reduced because we store less circuit graph instances in
memory. For example, strategy Tw = 2, Tg = 4 only increases
the average runtime by 3%, 6%, and 7% for k=1, 100, 10K
respectively, but reduces 30% of the memory consumption in
all cases we have tested. In this strategy, we have comparable
memory consumption compared to OpenTimer even at small
ks. At large ks, we reduce the memory usage by at most
33.02× (netcard, k=10K).

Increasing Tw generally reduces the memory usage at the
cost of increased runtime. Strategy Tw = 4, Tg = 2 increases
the average runtime by 15%, 19% and 25% for k=1, 100,
and 10K, respectively, but only uses 0.54× memory of our
parallelization strategy #1. Despite this runtime overhead,
our algorithm is still 41.77×, 109.04×, and 29.41× faster

than OpenTimer, HappyTimer, and iTimerC, respectively, on
average in generating the top-10K paths (computed by dividing
the average runtime ratio of the baselines by the average run-
time ratio of this strategy. Specifically, 41.77 = 51.80/1.24,
109.04 = 135.21/1.24, and 29.41 = 36.47/1.24.). Strategy
Tw = 8, Tg = 1 has the smallest memory consumption, which
is nearly the same as our 1-thread version. By parallelizing
within the circuit graph, it accelerates the 1-thread version by
1.63×, 1.60×, and 1.51× for k=1, 100, and 10K respectively.
However, it introduces 44%–69% runtime overhead compared
to parallelizing across iterations because of limited parallelism
within the circuit graph.
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Fig. 8: Runtime and memory values at different numbers of
post-CPPR paths (i.e., k) on leon2.
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Fig. 9: Runtime and memory values at different numbers of
threads for k=1 on leon2. OpenTimer with 1 and 2 threads
failed to finish within 3 hours, so we skip those two points.

C. Performance at Different Path Counts

Figure 8 draws the runtime and memory consumption versus
k, the number of post-CPPR critical paths requested. We tested
two strategies of our algorithms, one with Tw = 1, Tg = 8
[13] and another with Tw = 4, Tg = 2. Our algorithm
runs very fast for all number of paths, while the runtime
of iTimerC rises rapidly when k increases from 1K to 10K.
Meanwhile, our algorithm has a steady memory consumption
regardless of k, while the memory usage of OpenTimer and
iTimerC explode when k is large. We attribute the decent
scalability over k to the elimination of FF enumeration and the
progressive path generation. For our algorithm, the memory
consumption of strategy Tw = 4, Tg = 2 is smaller compared
to strategy Tw = 1, Tg = 8 across all numbers of paths, and
there is a remarkable gap. Meanwhile, these two strategies
have similar runtime except for k =100K. This shows that
additional parallelization within circuit graph gives smaller
memory consumption only at the cost of a slight runtime
overhead.

D. Performance at Different Thread Counts

Figure 9 and Figure 10 draw the runtime and memory
consumption at different numbers of threads. To show the
runtime and memory feature of our algorithm under different
parallelization strategies, we have tested three different ways
of thread allocation between Tg and Tw. For the first strategy,
we fix Tw = 1 (which is the same strategy as [13]) to
demonstrate the parallelism across clock tree depths. For the
other two strategies, we fix Tg to 2 and 4 respectively to
demonstrate the parallelism within the circuit graph. We do
not show iTimerC because its binary is hardcoded for 8
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Fig. 10: Runtime and memory values at different numbers of
threads for k=10K on leon2. OpenTimer with 1 and 2 threads
failed to finish within 3 hours, so we skip those two points.

threads. The result shows that our algorithm has an outstanding
performance on runtime. For k=10K, our algorithm uses only
a small portion of the memory than OpenTimer, while being
significantly faster. We also observe that our algorithm is
scalable to different numbers of threads in all of the three
strategies. For Tw = 1 and k = 1, it uses more memory
than OpenTimer at a larger thread count. The reason is that
we parallelize our algorithm across clock tree depths (setting
T = Tg), thus replicating the circuit graph in many threads.
This is the same way OpenTimer adopted to leverage multi-
core CPU power, while we have a slightly larger constant
behind our space complexity, in which we use extra arrival
time tuples to keep track of paths. However, by fixing Tg = 2
or 4 instead of Tw, we achieve both low runtime and low
memory than OpenTimer, even when k = 1. Furthermore, by
fixing Tg instead of Tw, our algorithm uses a fixed amount of
memory regardless of the number of threads used.

E. Comparison with Commercial Tool

In this section, we provide a detailed comparison between
our proposed algorithm and Synopsys PrimeTime. We conduct
the test in this section on a platform with 12 cores Intel
Xeon CPU at 2.60 GHz and 64 GB memory. We have
to use this platform instead of the one used in previous
sections, because our PrimeTime 2018.3 license is tied to this
hardware. Notice that the comparison between our algorithm
and PrimeTime may be unfair because of different application
scopes. Our scope targets a standalone research environment,
but commercial tools need to deal with many other components
in the closure flow even though many of them may not be
directly related to CPPR. It is very difficult to come up with
a fair comparison for the CPPR problem itself. Despite this,
we have made several efforts to make this comparison as fair
as possible:

1) We write a simple program to transform the data format
in TAU contests (i.e. delay-annotated timing graph) into
format that PrimeTime can read directly (i.e. verilog
source code, cell library, and design constraints). This
helps us run PrimeTime on the same set of benchmarks
as we use in the previous sections.

2) We enable CPPR in PrimeTime reports by setting
remove_clock_reconvergence_pessimism to
true, and crpr_threshold_ps to 0. With these
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TABLE VI: Runtime and memory comparison with the com-
mercial STA engine PrimeTime.

Benchmark k
PrimeTime Ours PrimeTime/Ours
8 Threads 8 Threads Ratio

RT Mem RT Mem RTR MemR

vga lcdv2
1 44 1511.72 2.82 377.92 15.72 4.00

100 46 1509.97 2.87 378.99 16.01 3.98
10K 80 1689.95 3.15 397.80 25.50 4.25

Combo4v2
1 79 1696.06 4.91 671.24 16.10 2.53

100 80 1692.12 4.96 671.95 16.20 2.52
10K 238 2588.26 5.51 699.75 43.13 3.70

Combo5v2
1 196 2139.38 13.93 1750.21 14.07 1.22

100 197 2139.38 14.61 1749.76 13.48 1.22
10K 279 2888.70 14.50 1775.71 19.24 1.63

Combo6v2
1 358 2959.11 22.57 3043.11 15.85 0.97

100 358 2959.20 24.02 3042.95 14.90 0.97
10K 412 3054.88 23.91 3059.71 17.25 1.00

Combo7v2
1 282 2571.66 18.86 2403.86 14.97 1.07

100 288 2577.47 18.27 2404.62 15.74 1.07
10K 402 3445.32 19.16 2424.03 20.96 1.42

netcard
1 412 3516.32 26.08 3281.10 15.81 1.07

100 407 3558.82 25.42 3282.06 16.01 1.08
10K 478 4190.51 25.91 3300.40 18.45 1.27

leon2
1 889 4892.45 29.14 3590.14 30.51 1.36

100 888 4911.28 29.09 3593.77 30.54 1.37
10K 1148 5615.83 29.71 3610.15 38.63 1.56

leon3mp
1 533 3197.52 21.23 2808.18 25.09 1.14

100 531 3199.67 21.11 2808.02 25.17 1.14
10K 731 4240.16 22.35 2824.72 32.72 1.50

Avg. Ratio
1 - 18.52 1.67

100 - 18.51 1.67
10K - 26.99 2.04

RT: Runtime in seconds. RTR: Runtime ratio.
Mem: Memory in MB. MemR: Memory ratio.

settings, PrimeTime will rank paths based on precise
post-CPPR slacks without speed-accuracy tradeoff.

3) We provide delay annotations directly to PrimeTime (in
SDF format) to bypass its built-in delay modeling of cell
arcs and net arcs. In this way, PrimeTime concentrates
on solving the CPPR path extraction problem.

Table VI shows the overall runtime and memory results.
We run our proposed algorithm with parallel strategy #1
(i.e. Tw = 1, Tg = 8). Notice that we have re-run the
experiments of our algorithm on the new platform for a fair
comparison with PrimeTime. We observe an average runtime
speedup of 18.52×, 18.51×, and 26.99× for k=1,100,10K
respectively. Across all benchmarks we have tested, we are at
least 13.48× faster than PrimeTime. Our algorithm also has
efficient memory performance, using only 60% the memory
for k=1,100, and 50% the memory for k=10K on average.
A notable case with largest runtime speedup is Combo4v2
with k=10K. In this case, we are 43.13× faster, while only
using 27% of the memory compared to PrimeTime. The
runtime and memory gap becomes larger with larger k. These
results demonstrate the advantage of our proposed algorithm
compared to an industry-standard commercial STA engine.

V. CONCLUSION

In this paper, we have proposed a novel provably good and
practically efficient CPPR algorithm. Instead of enumerating
all the FF pairs, we process the FF pairs in groups of LCA
depths to address their common path pessimism in the clock
tree, and introduce efficient data structures to reduce the search
space for finding post-CPPR paths. We prove the algorithm has
a time complexity proportional to the depth of the clock tree,

rather than the number of FFs which is typically larger by
orders of magnitude. Our algorithm is highly parallelizable,
and we can balance the runtime and memory consumption by
changing the allocation of threads. By performing parallel iter-
ations over different, independent LCA depths and the nodes
in the same level when propagating the arrival time tuples,
our algorithm has achieved 3-23× speedup on generating one
post-CPPR critical path, and 36-135× speedup on generating
10K post-CPPR critical paths over the state-of-the-art CPPR
algorithms. We plan to extend our algorithm to a GPU target
[14], [15], [16] in our future work, and integrate our timer
into timing-driven design optimization tasks such as place-
ment [17], [18], [19] and routing. Meanwhile, incremental
CPPR analysis remains a challenging problem due to lack of
pruning techniques for post-CPPR path-based analysis, which
we plan to investigate in the future.
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