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Abstract—As the timing guardband consumes more and more
design margin with the technology scaling, better-than-worst-case
(BTWC) techniques have gained more attention as a promis-
ing solution. BTWC techniques can relax the design margin
by transcending the pessimistic static timing constraints and
utilizing the dynamic timing information. However, to guarantee
the design reliability throughout the lifetime, the conventional
dynamic timing analysis (DTA) engines need an extra reliability
guardband, which is commonly evaluated under the worst-case
corners of aging and variation. This type of guardbanding con-
sumes the precious design margin, thus hindering the efficiency
improvement from BTWC techniques. Therefore, in this paper,
we propose AVATAR, an aging- and variation-aware dynamic
timing analyzer that can perform DTA with the impact of
transistor aging and random process variation, including the
gate-level aging analysis and random variation model that can
accurately calculate cell delay under the impact of transistor
aging and random variation, and an event-based DTA algorithm
that avoids the pessimistic property of graph-based analysis. We
also propose an ML-assisted DTA acceleration flow for the multi-
cycle DTA of homogeneous multicore designs. We present two
case studies using AVATAR to show its effectiveness. First, we
present an application-based dynamic-voltage-frequency-scaling
(DVFS) design methodology based on AVATAR, which can exploit
application-level dynamic timing slack (DTS) to improve energy
efficiency and performance. The results demonstrate that, com-
pared to the design based on the conventional corner-based DTA,
the additional performance improvement of the design based
on AVATAR can be up to 14% or the additional power-saving
can be up to 20%. Second, we demonstrate using the proposed
ML-assisted acceleration flow for reliability-aware deep neural
network (DNN) accelerator simulation. We use the proposed flow
to estimate the impact of timing errors due to aging and random
variation on the inference accuracy of two benchmark DNNs. The
results demonstrate that the proposed acceleration flow achieves
up to 10× speedup with an average error of less than 2%.

Index Terms—Dynamic timing analysis (DTA), aging-aware
timing analysis, random variation, machine learning (ML), tim-
ing error evaluation
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I. INTRODUCTION

As the CMOS technology scales to nanoscale, the design
margin has become extremely tight due to reliability and
manufacturability issues like transistor aging and random
process variation (local variation) [1]. To guarantee the prod-
uct’s yield and the circuit functionality during the expected
lifetime, designers usually choose to add timing or voltage
guardbands. However, the guardbands are estimated by static
timing analysis (STA) in the worst-case corners, and increase
rapidly with CMOS scaling, which may eventually obliterate
gains from device scaling [2], [3].

To overcome the above dilemmas, better-than-worst-case
(BTWC) techniques are proposed to further improve per-
formance or efficiency. BTWC methods usually transcend
the pessimistic static timing constraints, and adopt optimiza-
tion techniques such as dynamic-voltage-frequency-scaling
(DVFS) [4], [5], [6] and timing speculation [7], [8], [9]. On the
other hand, many emerging algorithms have nondeterministic
results and are inherently error-tolerant at the algorithm level.
some BTWC techniques further propose to trade precision,
accuracy, or even reliability for performance or energy effi-
ciency, such as approximate computing and application-level
error-tolerant design [10], [11], [12], [13]. All these techniques
depend on the dynamic timing information calculated by
dynamic timing analysis (DTA).

Moreover, with the ever-increasing demands of image pro-
cessing and machine learning (ML) applications, domain-
specific architectures (DSA) such as deep neural network
(DNN) accelerators have been widely deployed from data
centers to edge devices. BTWC techniques are widely used in
DNN accelerator design because of the high demand for en-
ergy efficiency and inherent error tolerance of ML algorithms.
For example, many recent works focus on exploiting inherent
error tolerance [14], [15], [16] or timing speculation [17], [7],
[8], [9] to improve the energy efficiency of DNN accelerators.
All these works also need DTA to evaluate the effectiveness
and explore the most optimal design parameters at the design
phase.

However, the conventional DTA is implemented by first
performing a gate-level simulation with delay annotation, then
using a post-processing program to extract the dynamic delay
and analyze the toggle paths for each cycle [5], [10]. This
implementation has two drawbacks. First, the net delay and
cell delay used during the gate-level simulation are dumped
from graph-based STA, which struggles with the pessimistic
properties of the graph-based analysis [18], [19], [20]. Sec-
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ondly, the conventional DTA tools need extra reliability guard-
bands in timing analysis, and the guardbands are estimated
under the worst-case aging and random variation. The margin
estimated by the corner-based method often exceeds 40% of
the nominal target specifications [3]. The pessimism stemming
from the dynamic delay calculation and reliability guardbands
will ultimately make the BTWC design an over-designed
system.

Therefore, in this paper, we propose AVATAR, an aging-
and variation-aware dynamic timing analyzer. AVATAR can
accurately analyze the dynamic timing information under the
impact of transistor aging and random variation. We also pro-
pose an ML-assisted DTA flow that can effectively accelerate
multi-cycle DTA with negligible errors. To the best of our
knowledge, AVATAR is the first DTA algorithm that enables
gate-level aging and random variation analysis. The novel
contributions of this paper are summarized as follows:

1) We propose AVATAR, an aging- and variation-aware dy-
namic timing analyzer, which can estimate the impact of
transistor aging and random variation on path delay cal-
culation in DTA. Compared to the conventional corner-
based analysis, AVATAR supports accurate dynamic
delay and delay variability estimation under a specific
aging scenario, which avoids pessimistic guardband.

2) We develop an event-based DTA algorithm, which simu-
lates the switching activities based on event propagation
for each cycle. The proposed DTA algorithm can calcu-
late the dynamic delay with accurate timing information,
and support the gate-level aging and variation model.

3) We propose a new ML-assisted acceleration flow to
speed up the homogeneous multi-core systems (espe-
cially DNN accelerator) simulation. We develop an
ML classifier that can filter out input patterns that are
less likely to cause timing errors, thereby significantly
reducing the simulation cycles while maintaining high
accuracy.

4) We present how AVATAR can be applied to guide
the application-based DVFS strategy design, which is
an effective optimization technique that can improve
energy efficiency by enabling application-based volt-
age/frequency adjustment.

We evaluate the proposed application-based DVFS strategy
on an open RISC-V core and a set of embedded application
benchmarks. The results demonstrate that, compared to the
design based on the conventional corner-based DTA, the
additional performance boosting of the proposed application-
based DVFS strategy based on AVATAR can be up to 14% or
the additional power-saving can be up to 20%. We also use
the proposed ML-assisted flow to estimate the classification
accuracy of two benchmark DNNs after aging. The results
show that the proposed flow can speed up the DTA up to 10×
with an error of less than 2%.

The rest of this paper is organized as follows. In Section II,
the preliminary of reliability issues in advanced technology
nodes, static timing analysis, and dynamic analysis are pre-
sented, and we formulate the problem. In Section III, the
implementation details of the aging-&variation-aware DTA
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Fig. 1: (a) The delay increase of FO4 delay because of the
impact of transistor aging at different Vdd. (b) The delay
variability of FO4 delay which is normalized to the delay
at nominal Vdd. All the data in this figure is collected from
HSPICE transient simulation with a 16/14 nm FinFET mod-
elcard.

algorithm are presented. Section IV describes the ML-assisted
acceleration methods. Section V presents the use case of
AVATAR in application-based DVFS. Section VI presents the
experiment results of the ML-assisted DTA flow in accelerator
simulation. Finally, Section VII concludes the paper.

II. PRELIMINARIES

A. Reliability Concerns in Timing Analysis

The aggressive scaling of transistor size makes the transistor
aging and local process variation more and more pronounced
in the nanoscale, which threatens the correct system func-
tionality. Transistor aging effects reduce the driving capabil-
ity of the transistors, which increases the circuit delay and
the probability of timing errors over time. While random
process variation causes path delay variation, increasing the
complexity of timing analysis, especially in near-threshold
voltage (NTV). Fig. 1 shows the cell delay increase due to
aging and random variation. The cell used is a Fan-out-of-4
(FO4) inverter, which is always used when optimizing critical
paths. The results show that, in the nominal voltage, the
delay variability is mainly caused by the aging effect. While
the impact of random variation on cell delay becomes more
significant when performing aggressive voltage scaling.

To avoid the timing errors due to random variation and
transistor aging that may impact the functionality and the
yield, designers typically resort to guardbanding, which adds
an extra margin in timing analysis [2]. However, the guardband
of aging and random variation is estimated under the worst-
case corner. Moreover, the guardband is increasing rapidly due
to technology scaling. As a result, more performance, power,
and area (PPA) gains are being sacrificed for guardband,
which may eventually obliterate PPA benefits from technology
scaling. Therefore, aging- and variation-aware design flow is
urgently needed.

B. Static Timing Analysis

STA can find the longest timing path on topology and
calculate the critical path delay. Depending on the imple-
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Fig. 2: The delay calculation in (a) the GB-STA is pessimistic
because of the input slew merge. While the delay calculation
in (b) the PB-STA is accurate.

mentation algorithm, STA can be divided into the graph-
based STA (GB-STA) and the path-based STA (PB-STA). The
GB-STA constructs a directed acyclic graph (DAG) based
on the circuit netlist, which consists of nodes (the input
and output ports and cell pins) and edges (the timing arcs
of cells and nets). GB-STA calculates the critical delay in
two steps: forward propagation, and backward propagation.
In the forward propagation step, the timing information of
each timing arc is estimated, which includes delay, slew, and
arrive time (at). In the backward propagation step, GB-STA
calculates the required arrive time and finds the top-K paths.

GB-STA can traverse the whole graph and calculates the
critical delay quickly [21]. However, the delay calculation in
GB-STA is pessimistic because it propagates the worst-case
slew. Fig. 2(a) gives an example of slew propagation and delay
calculation in GB-STA. In the setup check, the slew calculation
of each cell uses the worst slew of all input pins. For example,
the slew calculation of the pin U1/Z will utilize the worst
slew, i.e. slew of pin U1/B, thus it would be overestimated.
Moreover, the delay calculation of the gates in the next level
(U2) will also be estimated.

Compare to the GB-STA, PB-STA supports more accurate
delay calculation. Because PB-STA is used for path delay cal-
culation of particular paths, and the slew and delay calculation
utilizes the realistic input slew(Fig. 2(b)) [20], [19]. For exam-
ple, when the path {U1/A → U1/Z → U2/A → U2/Z} is
analyzed in PB-STA, PB-STA tools would calculate the slew
of U1/Z based on the input slew of pin U1/A (Fig. 2(b)).
Such input slew merge accounts for the most pessimism in
path delay calculation of GB-STA. Although PB-STA is more
accurate than GB-STA, it is too time-consuming, as we cannot
enumerate all paths in a large circuit. In practice, designers
tend to utilize GB-STA first to find the top-K critical paths,
and then recalculate these paths in PB-STA mode. In advanced
technology nodes, increasing design complexity and clock
frequency leads to more and more expensive PB-STA.

C. Dynamic Timing Analysis

STA is a widely used timing analysis algorithm for decades,
but it can not calculate dynamic delay according to realistic in-
puts and evaluate the timing error rate under certain workloads.
While BTWC techniques usually need dynamic information
such as the dynamic timing slack (DTS) and toggle rates to
relax the pessimistic design constraints.

Graph-based DTA (GB-DTA) is a commonly used technique
to calculate such dynamic information [5], [10]. GB-DTA is
usually implemented by the delay-annotated gate-level simu-
lation with a post-processing program, and the cell delay used
is extracted from GB-STA. There are two main disadvantages
of the conventional GB-DTA, the first is the pessimistic
path delay calculation due to the previously mentioned worst
slew merge. And the second is that the timing information
calculated by these tools requires extra aging and random
variation guardbands calculated under the worst-case corner
to cover the impact of non-ideal factors. Such pessimism in
DTA will eventually lead to the over-design of the BTWC
system.

D. Problem Formulation for Aging- and Variation-aware Dy-
namic Timing Analysis

DTA is usually utilized to estimate the dynamic delay for
specific input vectors. We define the problem of aging- &
variation-aware DTA for a single cycle as follows:

Problem. Given a circuit netlist, a specific input vector, and
the specific aging workload, simulate the switching activities
of each internal node with timing information, report the
dynamic delay distribution of each timing endpoint under the
impact of transistor aging and random variation.

Definition 1. Event: a digital switching signal on a pin. The
at (arrive time) of an event is the time of signal switching
relative to the last clock. The slew of an event is the transition
time of the signal switching.
Definition 2. Triggered pin: a pin is triggered in a particular
cycle if the value of the pin changes in that cycle.
Definition 3. Triggered path: a path is triggered in a particular
cycle if all the pins in the path are triggered in that cycle.
Definition 4. Aging workload: Typical workload of a circuit
over its expected lifetime, which is used to calculate aging
after a specific aging time.

In practice, the multi-cycle DTA can be implemented by
performing the single-cycle DTA repeatedly.

III. EVENT-BASED AGING- AND VARIATION-AWARE DTA

In this section, the implementation details of the proposed
aging- and variation-aware DTA algorithm are presented. The
workflow of AVATAR is depicted in Fig. 3. It includes two
parts: the gate-level aging and variation analysis, and the
event-based DTA.

A. Gate-level Aging and Variation Model Characterization

The gate-level aging and variation analysis require the
corresponding cell-level information, which is modeled as an
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Fig. 3: Overview of the task flow for AVATAR.

aging-aware timing model and a variation-aware timing model.
The aging-aware timing model is characterized by the method
proposed in [22], in which the impact of transistor aging on
the cell delay and transition time (tr) is modeled as follows:

delayaged = delayfresh +
∑
i∈I

ai ×∆Vthi (1)

traged = trfresh +
∑
i∈I

bi ×∆Vthi (2)

where I is the set of all transistors in the cell, delayfresh and
trfresh are obtained from the liberty library. According to the
SPICE simulation, we found that the sensitivity coefficients
ai, bi also depend on the slew of the input signal and the load
of the output pin. Therefore, we use the first-order linear model
is used to fit the dependency as follows:

ai = ai0 + αai × slew + βai × load (3)

The polynomial ridge regression is employed to fit the equa-
tions above.

In the characterized gate-level aging model, the inputs for
querying an aged cell delay or transition time are the corre-
sponding timing arc, the input slew on the input pin, the output
load, the ∆Vth of transistors, and operating conditions(such as
supply voltage and temperature). And the outputs of the gate-
level aging model are the cell delay and tr after aging.

For random process variation analysis, the parametric on-
chip variation (POCV) analysis [23] is adopted. POCV can be
implemented by the liberty variation format (LVF) library, a
model that has been proven and widely used in commercial
libraries. LVF library captures the cell delay variability and
transition time variability due to random variation at multiple
slew and load combinations in look-up tables. To reduce the
complexity of characterization and analysis, random process
variations are modeled by assuming that it is independent of
the transistor aging [24], and we only model the increase of the
means value of cell delay and tr due to transistor aging. It is
noted that the model characterization requires lots of SPICE

simulations, but these simulations only need to be executed
once for each standard cell library.

B. Workload Analysis

The workload analysis is for providing the necessary infor-
mation for aging analysis, i.e. the switching activities (duty
factor and toggle rate) of each gate by simulating a realistic
working scenario. As mentioned earlier, the necessary inputs
of the gate-level aging-aware timing model are the ∆Vth of
each transistor in a standard cell. Therefore, the expected
results of workload analysis are the ∆Vth of each transistor.
Since transistor aging is mainly caused by negative bias
temperature instability (NBTI) [25] in digital circuits, this
work only calculates the Vth degradation of PMOS.

We perform workload analysis in two steps: first, we use
zero-delay gate-level simulation to estimate the switching
activity (toggle rate and static probability) of internal nets;
then, we employ a cell-level analytical model [22] to estimate
the stress of each transistor, and the long-term aging model for
calculating the ∆Vth. It is noted that the zero-delay gate-level
simulation can be replaced by the delay-annotated gate-level
simulation or the event-based DTA, which is more accurate,
but the runtime also increases substantially. After collecting
the ∆Vth information, combined with the liberty library, the
event-based DTA engine can query the timing information of
any cell after aging.

C. Event-based DTA

The DTA engine in AVATAR is an event-based algorithm.
In the event-based algorithm, the aforementioned gate-level
aging-aware model and the switching activities of workload
analysis are adopted to query the aged cell delay and tr after
aging. To support random variation analysis, deterministic
timing information (including delays, arrival times, slacks,
etc.) is replaced with a Gaussian distribution, which can be
represented by two parameters, the mean value (µ) of the
distribution and the stand deviation (σ). Hence, the dynamic
delays in the timing report of AVATAR are also distributions.

In the event-based algorithm, an event refers to the signal
switching of an internal net or a pin. Each event has at least
three basic attributes: signal type (rising or falling), slew,
and arrival time (at). Different from the conventional delay-
annotated graph-based DTA, in the event-based algorithm,
each event has its own slew property, and the input slew used
for the cell delay calculation is the accurate slew. Therefore,
the path delay calculation in the event-based DTA algorithm
can avoid graph-based pessimism, and achieve the same ac-
curacy as the path-based analysis.

As shown in Fig. 3, the first task in the event-based DTA is
reading the input netlist and building the timing graph. Then,
we levelize the timing graph, this step is to build the level-by-
level dependencies of nets and gates for the subsequent events
propagation algorithm.

The next task is the cycle-by-cycle logic simulation and
dynamic timing analysis. In each cycle, the task can be divided
into three sub-steps: input event generation, event propagation,
and path reporting.



5

U3

A

B
Z

A

B U1
Z

A
U4

Z

A

B

CI

CO

S
U6

U5

A

C

ZB

A
U7

Z

atU1/A=0.1

A
U2

Z

atU1/B=0.8

atU2/Z=0.6

atU5/C=0.33

atU1/Z=0.2 atU1/Z=0.9

atU2/A=0.5

atU7/Z=1.1

1

1

0

Level 0 Level 1 Level 2 Level 3

1

0

1

atU6/CO=1

Updating order: level-0 nets → level-0 gates (U1, U2, U3, U4)

→ level-1 nets → level-1 gates (U5)

→ level-2 nets → level-2 gates (U6)

→ level-3 nets → level-3 gates (U7) → …

Fig. 4: The events propagation process on a simple circuit. For a brief illustration of the event propagation algorithm, we
ignore the wire delay and set all cell delays as 0.1.

A

B

CI

CO

S(load = 10)U6

Event on A: {at.μ =0.2, at.

=0.02, slew=0.1, rising}

Event on B: {at.μ =0.6, at.

=0.025, slew=0.08, falling}

Arrive times of all input events T(U6) = {0.2(A), 0.6(B)}

Event on S: {at.μ=0.323, 

at.=0.044, slew=0.187, rising}

Event on S: {at.μ=0.721, 

at.=0.034, slew=0.074, falling}

1

atB=0.6

atA=0.2

𝝁𝒇𝒓𝒆𝒔𝒉
𝒅𝒆𝒍𝒂𝒚

𝑨 𝒕𝒐 𝑺, 𝒔𝒍𝒆𝒘: 𝟎. 𝟏, 𝒍𝒐𝒂𝒅: 𝟏𝟎 = 𝑳𝑼𝑻𝒅𝒆𝒍𝒂𝒚 𝟎. 𝟏, 𝟏𝟎 = 𝟎. 𝟏

𝝁𝒂𝒈𝒆𝒅
𝒅𝒆𝒍𝒂𝒚

𝑨 𝒕𝒐 𝑺, 𝒔𝒍𝒆𝒘: 𝟎. 𝟏, 𝒍𝒐𝒂𝒅: 𝟏𝟎 = 𝟎. 𝟏 + ∑𝒂𝒊 ∗ ∆𝑽𝒕𝒉 = 𝟎. 𝟏𝟐𝟑

𝝈𝒇𝒓𝒆𝒔𝒉
𝒅𝒆𝒍𝒂𝒚

𝑨 𝒕𝒐 𝑺, 𝒔𝒍𝒆𝒘: 𝟎. 𝟏, 𝒍𝒐𝒂𝒅: 𝟏𝟎 = 𝑳𝑼𝑻𝒐𝒄𝒗 𝟎. 𝟏, 𝟏𝟎 = 𝟎. 𝟎𝟒

𝒕𝒓𝒇𝒓𝒆𝒔𝒉 𝑨 𝒕𝒐 𝑺, 𝒔𝒍𝒆𝒘: 𝟎. 𝟏, 𝒍𝒐𝒂𝒅: 𝟏𝟎 = 𝑳𝑼𝑻𝒕𝒓 𝟎. 𝟏, 𝟏𝟎 = 𝟎. 𝟏𝟓

𝒕𝒓𝒂𝒈𝒆𝒅 𝑨 𝒕𝒐 𝑺, 𝒔𝒍𝒆𝒘: 𝟎. 𝟏, 𝒍𝒐𝒂𝒅: 𝟏𝟎 = 𝟎. 𝟏𝟓 + ∑𝒃𝒊 ∗ ∆𝑽𝒕𝒉 = 𝟎. 𝟏𝟖𝟕

Fig. 5: An example of the event propagation for cell FA.

1) Input Event Generation: AVATAR first reads the input
vector, and compares the bit-wise value of two adjacent cycles.
A changed value means a digital switching occurs, so we need
to build an input event on the corresponding pin.

We set the slew of input events as the user-defined
input slew, and we set the at of the input event as the sum of
the user-defined external delay and a random offset, defined
as input uncertainty. The input uncertainty is used for
the following two reasons: (1) Realistic input signals are not
perfectly aligned because of the clock skew or jitter of the
previous stage flip-flops or process and voltage variations. (2)
A random offset ensures that multiple input events will not
arrive at exactly the same time on any gate. This helps to
eliminate the ambiguity in the propagation algorithm.

2) Event Propagation: In this step, the input events are
propagated to the corresponding timing endpoints (e.g. data
pin of flip-flops or the output pin of the netlist). Fig. 4 shows
an example to describe how events are propagated in the
timing graph. The events are propagated through gates and nets
alternately. Moreover, the propagation algorithm through a net
and the propagation algorithm through a gate are different.

For a net in a circuit netlist, there is one input pin and at least

one output node. Propagation through a net will only increase
the at of events by net delay. Therefore, we access each output
pin in turn and add output events to it. The at of the output
event is the at of the input event plus the corresponding wire
delay.

While the event propagation algorithm through gates is more
complicated, because the new event generation requires logic
simulation and timing calculation. Moreover, for these multi-
input gates, the algorithm has to deal with the case that there
are several input events from different pins.

Algorithm 1 shows the propagation algorithm through a
gate. We first collect all the arrival times of the input events
and sort them in chronological order (lines 1-3). Then, we
perform the logic simulation of the gate at each time and
obtain the corresponding output value (lines 5-6). A changed
value on the output pin in two adjacent times means that there
is an output event. For each output event, the algorithm first
determines the triggered timing arc and query the µ and σ
of the cell delay and the output tr from the characterized
aging-aware model and the LVF library (lines 8-10). Finally,
the algorithm calculates the at and slew of the output event
according to library information and the input event that
triggers the current output event (lines 11-14), and add the
output event to the event list of the output pin (line 15). After
completing all output events, the algorithm traverses the output
event list and removes the improper event pairs, which include
the collision case or the event pairs that the arrive time interval
is less than the transition time (line 16). Because there will be
no complete signal switching for these cases.

Fig. 5 presents an example to illustrate the propagation
process and the corresponding delay calculation. In the current
cycle, there are two input events on the input pins A and B. We
collect the arrive time of these input events and get the sorted
list of time {0.2, 0.6}. Then, we perform the logic simulation
of the Full Adder (FA) cell at each time point and obtain the
output value. The value of output pin CO does not change,
while the value of pin S changes twice. Therefore, there are
two output events on pin S triggered by the two input events.
Next, the corresponding delay (both µ and σ), and output tr
after aging are queried from the characterized gate-level aging
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Algorithm 1: Propagate events through the gate.
Input: gate gi , event list of input pins
Output: event list of output pins

1 build a list of time T (gi) ;
2 T (gi)← get input event arrive time(gi) ;
3 sort T (gi) and ensure that there are no two input

events with the same at;
4 for all time ti ∈ T (gi) do
5 find the corresponding input event event in;
6 get the states of input pins at time ti, and calculate

the output value;
7 for all pin pi ∈ PINout whose state changed do

// calculate cell delay and tr

8 µdelay
aged = LUT (event in.slew, load) +

aging model(event in.slew, load,∆Vth);
9 σdelay

fresh = LUT (event in.slew, load);
10 traged = LUT (event in.slew, load) +

aging model(event in.slew, load,∆Vth);
// build a new event

11 build an output event event out;
12 event out.at.µ = event in.at.µ+ µdelay

aged ;
13 event out.at.σ =

Sqrt((event in.at.σ)2 + (σdelay
fresh)

2);
14 event out.slew = traged;
15 add event out to the events list of pi;
16 filter the improper event pairs

model and LVF library. Finally, we calculate the output events
according to the cell delay and input events.

3) Path Reporting: After all event propagation is complete,
the algorithm reports the dynamic delay and the longest
triggered path. AVATAR iterates through the event lists of all
timing endpoints, and finds the latest event. The at (µ and
σ) are reported as the critical dynamic delay distribution of
the current cycle. For path reporting, AVATAR starts from the
latest event, and finds the input event that triggered this output
event at the previous stage, and reports the corresponding input
pin. Repeat reporting pins until it is a primary input pin. After
reporting the dynamic delay and path, AVATAR clears all the
event lists and reserves the final state of internal pins in the
current cycle, which are recorded as the initial logic state
for the event propagation of the next inputs. This operation
guarantees that AVATAR does not take up too much memory
as the simulation cycle increases.

D. Parallel Acceleration

In practice, the main factor causing the prohibitive runtime
of DTA is not the size of the circuit, but the excessive number
of simulation cycles (usually > 100M) [11]. Therefore, we
adopt a cycle parallel scheme to accelerate the simulation and
timing analysis. The cycles to be analyzed are divided into
n equal parts, which are assigned to n different CPU threads
for independent execution. Fig. 6 presents the rules for task
assignment. It should be noted that, there should be an m-cycle
overlap when splitting the input vectors, and the overlap size

1 Thread

Thread 0: 0~1000 

2 Threads

Thread 0: 0~500 
Thread 1: (500 - m)~1000 

n Threads

Thread 0: 0~1000/n 

Thread 1: (1000/n - m)~2000/n 

. . . 

Thread n: (1000(n-1)/n - m)~1000

Total simulation cycles0 1000

0 1000

0 1000

Fig. 6: The task assignment scheme for parallel execution in
AVATAR.

m is determined by the pipeline depth, because internal nodes
require m cycles to be in the logic state that it is supposed to be
in. Compared with the netlist splitting scheme, the proposed
cycle parallelism avoids additional segmentation algorithms,
and different subtasks can be executed independently. These
advantages allow for better scalability of AVATAR.

IV. ML-ASSISTED DTA FLOW

Although DTA is the most accurate pre-silicon method in
capturing the real impact of timing errors, it is not widely
used due to the prohibitively long simulation time. Therefore,
in addition to developing faster parallel DTA tools, recent
works propose to adopt ML algorithms to further accelerate
the DTA [26], [27], [28], [29]. As discussed in the previous
section, the dynamic delay is determined by the input pattern
and operation conditions (including but not limited to temper-
ature, voltage, and aging). Several previous works proposed
to use ML classifiers to predict timing errors according to the
input patterns [26], [29]. Nevertheless, to predict the timing
error under multiple clock periods and operation conditions,
designers have to develop multiple models for each case. Ma
et al [27] propose to use regression models to directly predict
the dynamic delay under different input patterns, voltages, and
temperatures.

However, these algorithms cannot be applied to accelerate
the proposed aging- and variation-aware DTA because of
the following reasons: 1) The gate-level aging-induced delay
depends on the switching activity of each gate. Extra input
features are needed to enable aged dynamic delay prediction,
which will increase the number of input features by several
orders of magnitude. 2) Generating training data with many
input patterns under a wide range of operating conditions
is very time-consuming. Also, a large training set can make
the model training very slow, thus effective acceleration may
not be achieved. 3) Although the average prediction error is
acceptable, it is difficult for these ML models to precisely
predict the extreme values (shown in section VI-A). Thus the
estimation error is large when predicting small TER.

To address the aforementioned challenges, we divide the
factors affecting dynamic delay into two parts: 1) The input
pattern, determine which paths will be triggered. 2) The
operation conditions that affect the path delay of these trig-
gered paths. Hence the problem of predicting the dynamic
delay after aging is divided into two problems: predicting the
paths triggered by the specific input pattern and accurately
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calculating the aged path delay. Such a problem decomposition
is based on the observation that only a small percentage of
input patterns can cause timing errors, which are defined as
critical input patterns. We propose an ML model as a pre-filter
to identify the critical patterns from a large number of inputs
and only adopt AVATAR to simulate the critical patterns. As
we will demonstrate in the next section, the pre-filter can
significantly reduce the number of cycles to be simulated, thus
achieving several times acceleration.

Fig. 7 shows the overall workflow of the proposed ML-
assisted DTA. The proposed ML-assisted DTA flow can be
used for all homogeneous multi-core systems, and we use
the DNN accelerator simulation as an example. Note that
the Model Training phase is being executed only once for
developing the ML model. We will demonstrate the proposed
flow in the context of the systolic array-based accelerator with
the output stationary dataflow, which is used in the Google
TPU [30] and is a commonly used architecture for DNN
acceleration.

A. Input Extraction

In the first step, we offload the quantized DNN into the
determined size systolic array. Then, we perform a behavior
simulation of the specific systolic dataflow to obtain the input
vectors and golden output vectors of MACs. We only consider
the systolic dataflows that use local communication, such as
output stationary, weight stationary, and input stationary.

B. Model Training

1) Input Feature.: The previous works have demonstrated
that, besides the current input vectors, the input vectors of the
previous cycles affect timing errors. And the window of history
effect is equal to the pipeline depth [31], [29] of the circuit.
Because the dynamic delay depends on the previous state of
the circuit and the next state it is about to switch to, the state
of an m-stage pipeline circuit is determined by the previous
m inputs. Therefore, the input features are {x[t], · · · , x[t −
d+1], y golden[t], · · · , y golden[t− d+1]}, where d is the
pipeline depth.

2) Labels.: To assign labels to the training data, we use
AVATAR to calculate the corresponding fresh dynamic delays
of each timing endpoint. As long as the dynamic delay on
any endpoint is greater than 80% of the critical path delay, we
label the current input pattern as the critical pattern. In other
words, we define the input patterns that will trigger the first
20% of the long path as critical input patterns. The reason
why the delay threshold is taken as 80% of the critical path
delay is that the clock period is determined according to the
critical path, and the derate factor to cover the effect of PVTA
variation is generally greater than 0.8. It should be noted that
the delay threshold can also be freely defined according to the
actual design scenario.

3) Training Process.: Previous works have explored mul-
tiple supervised ML algorithms to predict timing errors, and
their results all indicate that the random forest classifier (RFC)
is more competitive in terms of prediction accuracy and
model complexity [27], [29]. Therefore, we adopt a balanced

random forest classifier from the imbalanced-learn framework
of Python [32], because the dataset is highly biased (the trigger
rate of the long timing paths is low). We keep most of the
hyperparameters as default, and only set min samples split
to 6 to reduce the size of the model and prevent over-fitting.

C. Aging-aware Accelerator Simulation

The proposed aging-aware accelerator simulation is im-
plemented in two steps: TER estimation and error-injection
simulation. We first adopt the ML-assisted DTA flow to
estimate the per-layer bit-wise TERs. We should note the TER
of each output bit is estimated separately, because different
endpoints are located on different timing paths. In this step, the
trained ML model is deployed to identify the critical patterns
from the original input vectors. Because the critical patterns
usually account for a small percentage, the number of cycles
to be simulated can be greatly reduced, thus achieving several
times of acceleration.

Next, we calculate the bit error rates (BERs) of the out-
put activations based on the TERs, and use error-injection
simulation to estimate the classification accuracy. The BER
of the output activations in the output stationary dataflow is
calculated as:

BER(i) = 1−
N∏
(1− TER(i)) (4)

where N is the number of MAC operations required for one
convolution in the corresponding layer. The error-injection
simulation is implemented using PyTorch. We randomly flip
the corresponding bit of output activations (before the activa-
tion function) according to its BERs. Generally speaking, in
most arithmetic units, only a few MSBs have non-zero BERs,
which means the error injection does not increase runtime
significantly. To avoid randomness error, the batch size is
set to 128 and the error-injection simulation is repeated five
times with different seeds for each BER combination.

V. APPLICATION-BASED DVFS

We target the application-based DVFS as one of the use
cases of AVATAR. Application-based DVFS is a widely
adopted optimization method in embedded systems, which can
effectively improve energy efficiency [4], [5], [6]. The moti-
vation is based on the experimental observation that specific
instructions and operands may not trigger all functionalities
when being executed on an embedded core. Therefore, there
will be a slack between the longest path delay calculated by
STA and the largest delay of the paths triggered by the current
instruction, which is defined as the DTS of the instruction.
Similarly, the timing slack between the critical path of STA
and the longest path that may be triggered by an application is
defined as the DTS of the application. The DTS of a specific
application means that the Vmin could have been smaller or
the fmax could have been larger than the nominal value when
t he processor executes the application. Therefore, allocating
an optimal Vmin/fmax for each application instead of using
the fixed Vdd/fmax can improve the efficiency or performance
of an embedded processor.
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Fig. 7: Workflow of the proposed ML-assisted DTA for accelerator simulation.

TABLE I: Performance improvement from application-based DVFS based on the corner-based DTA and AVATAR. The processor
operates at the nominal Vdd of 0.8V.

Benchmark [33]
Corner-based DTA [4], [5] AVATAR (this work)

Delay (ps) Max Freq.
(MHz)

Impro.
(vs STA)

Delay (ps) Max Freq.
(MHz)

Impro.
(vs STA)

Additional Benefits
(vs corner-based DTA)µ σ

SHA 1054.95 948 13.75% 957.65 7.65 1020 22.38% 8.63%
AES CBC 1132.18 883 5.99% 1028.41 7.76 951 14.10% 8.11%

FIR 1092.71 915 9.82% 991.29 7.56 986 18.35% 8.53%
BubbleSort 772.28 1290 55.38% 701.84 7.94 1380 65.36% 9.98%

Motion Detection 1043.48 958 15.00% 945.27 7.56 1030 23.97% 8.97%
CNN 1151.86 868 4.18% 1045.53 7.69 936 12.30% 8.12%

Convolution 1151.78 868 4.19% 1045.70 7.69 936 12.28% 8.09%
2d Filter 1068.33 936 12.33% 927.48 7.37 1050 26.37% 14.04%

MatrixMult 1092.05 916 9.89% 991.29 6.75 989 18.63% 8.74%
DCT 852.47 1170 40.77% 768.55 6.72 1270 52.15% 11.38%
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Applications

RISC-V core

Fig. 8: Overview of tool flows for the application-based DVFS.

The DVFS design flow is demonstrated in Fig. 8. We
first compile the embedded applications to executable the
binary files of the target processor, and then we execute these
applications in the RTL simulation. The aim of the RTL
simulation is to get the corresponding input vectors of the
timing critical functional units (FUs). It is worth noting that
AVATAR can directly perform the timing analysis for the full
processor, but this work only calculates the dynamic delay
of the FUs in the processor because the previous work [5]

has shown that the critical paths are mainly located in the
FUs. Moreover, timing errors in the FUs will only result in
wrong computing value and will not cause the crash of the
application, which indicates that some timing errors can be
tolerated in some applications [29].

Then, the RTL description of the target processor is synthe-
sized into the gate-level netlists. We use AVATAR as the DTA
engine to calculate the dynamic delays of the timing critical
FUs. The reports of AVATAR include the dynamic delays of
each timing endpoint and the longest path triggered per cycle,
by which we can also estimate the timing error rate (TER) of
each application. Finally, we allocate the optimal Vmin/fmax

for each benchmark application based on the DTS and TER.

A. Experimental Setup

We implement AVATAR in C++ and perform all the ex-
periments on a Linux machine with Intel Xeon E5-2650 at
2.20GHz and 64 GB RAM. AVATAR is executed in parallel
with 32 CPU threads by default. The benchmark embedded
processor is RI5CY, an open-source RISC-V core [33], and the
benchmark applications include cryptographic kernels (SHA
and AES CBC), control-intensive applications (BubbleSort),
transformation (DCT), and data-intensive linear algebra ker-
nels (FIR, CNN, 2d Filter, and MatrixMult). We use Synopsys
Design Compiler [34] to synthesize the RISC-V core with
the open-source Nangate 15nm standard cell library [35]. We
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Fig. 9: The required aging guardband and variation guardband
at different voltages.

perform static timing analysis and generate sdf files by using
Synopsys Primetime [36]. The Power under different voltages
is also evaluated by Primetime PX [37]. The LVF libraries are
characterized at each Vdd between 0.8V and 0.4V at 0.02V
interval with a commercial 16/14nm FinFET modelcard, using
Siliconsmart [38]. Gate-level aging-aware delay models are
characterized by the NBTI model from [25], which has been
calibrated with the silicon data of 16/14 nm FinFETs. The
maximum frequency of the implemented processor is 833MHz
at the nominal voltage 0.8V.

We use the following two methods to perform DTA and
determine the application-specific Vmin/fmax:

1) Using the corner-based DTA with extra aging guardband
and variation guardbands in dynamic delay calcula-
tion [4], [5]. Therefore, the reported dynamic delays are
calculated as delay∗(1+total guardband). According
to the previous works, the aging guardband is assumed
to be 15% [22] and the random variation guardband is
assumed to be 5% [39] at nominal Vdd. And the trend
of the guardband with different voltages is estimated by
the FO4 delay [40], as shown in Fig. 9. As the supply
voltage Vdd decreases, the needed total guardband first
decreases because of the abatement of the aging effect.
But as the Vdd continues to decrease to the near-
threshold region, the total guardband begins to gradually
increase because of the increasing impact of random
variation.

2) Using AVATAR. The dynamic delay reported by
AVATAR already includes the impacts of aging and
variation, and thus, no extra guardband is needed. The
final delay is calculated as µ(delay) + 3 ∗ σ(delay).

To avoid the errors arising from the small amount of input
data, for each application, the number of simulation cycles is
at least 200k cycles and at most 2M cycles. By comparing
the performance and energy efficiency improvement of these
two methods, we show how AVATAR enables better DVFS at
runtime.

B. Performance and Power Improvement

Table I shows the performance improvement by adopting
the performance-first DVFS strategy based on the corner-based

DTA and AVATAR. It can be seen that the maximum dynamic
delay of different applications is different, depending on which
logic paths can be triggered. For example, the maximum
dynamic delays of the application CNN, AES CBC are close to
the static critical path delay, because these applications contain
lots of multiplications, thus may trigger the critical paths of
the FU multiplier. While the maximum dynamic delays of
the application BubbleSort, DCT are significantly less than
the static critical path delay, because the instructions in the
application BubbleSort are mainly executed by the comparator
unit in the ALU. As for the application DCT, it also contains
lots of multiplications, but the operands are 8-bit integers,
which will not trigger the long logic paths of the FU multiplier.

Table I also shows that, compared to the static design, the
DVFS strategy based on the corner-based DTA can improve
the performance by an average of 17.13%, while the DVFS
strategy based on AVATAR can improve the performance by an
average of 26.59%. The additional improvement of AVATAR
over the corner-based DTA varies in different applications.
Overall, AVATAR’s additional performance improvement is
8% to 14%. This is because the longest paths triggered by
different applications are different, but the total guardband is
the same for all paths in the corner-based DTA. In practice,
however, the delay degradation and variability of a path depend
on the type of cells on the path and the workload.

Table II shows the power saving by adopting the power-first
DVFS strategy based on the corner-based DTA and AVATAR.
On average, the DVFS strategy based on the corner-based DTA
can save power by 38%, while the strategy based on AVATAR
can save power by 50.57%. Compared with the corner-based
DTA, AVATAR’s additional power-saving can be up to 20%.
It is worth noting that the minimum energy point is about
0.2V for the used technology, which is lower than the Vmin

in table II. Therefore, the strategy based on AVATAR not only
saves more power, but also gains more energy efficiency.

VI. DNN ACCELERATOR SIMULATION

We target DNN accelerator simulation as another use case
of AVATAR and the proposed ML-assisted DTA flow.

The systolic array with the output stationary dataflow is
used as the benchmark DNN accelerator, which contains 65K
(256×256) MAC units with 8-bit signed weights, 8-bit un-
signed activations, and 24-bit partial sums. We synthesize the
benchmark systolic array with the open-source Nangate 15nm
standard cell library, using Synopsys Design Compiler. Two
DNNs for the CIFAR-10 dataset are adopted (the parameters
of each DNN benchmark are shown in Table III) to evaluate
the accuracy.

In the Input Extraction step, the mapping and scheduling
are implemented by the open-source tool SCALE-Sim [41].
And the quantization and re-training are implemented in the
PyTorch framework.

We estimate the TER and the classification accuracy using
the following methods:

• Full-Sim: simulates all MAC operations using AVATAR.
The reports of AVATAR are the bit-wise timing error rates
after aging.
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TABLE II: Power saving from application-based DVFS based on the corner-based DTA and AVATAR. The processor operates
at the nominal frequency of 833MHz.

Benchmark [33]
Corner-based DTA [4], [5] AVATAR (this work)

Min Vdd
(V) Delay (ps) Power

Savings
Min Vdd

(V)
Delay (ps) Power

Savings
Additional Benefits

(vs corner-based DTA)µ σ
SHA 0.66 1177.19 38.00% 0.60 1144.04 11.44 50.73% 12.73%

AES CBC 0.72 1191.76 23.25% 0.64 1165.70 10.45 42.41% 19.16%
FIR 0.68 1193.89 33.32% 0.62 1152.21 10.72 46.65% 13.33%

BubbleSort 0.48 1185.59 71.01% 0.46 1111.08 20.18 73.76% 2.75%
Motion Detection 0.64 1193.09 42.41% 0.60 1130.30 11.30 50.73% 8.32%

CNN 0.74 1193.56 17.87% 0.66 1157.36 9.88 38.00% 20.13%
Convolution 0.74 1193.81 17.87% 0.66 1157.58 9.88 38.00% 20.13%

2d Filter 0.66 1190.69 38.00% 0.60 1155.70 10.61 50.73% 12.73%
MatrixMult 0.68 1192.24 33.32% 0.62 1146.01 9.48 46.65% 13.33%

DCT 0.52 1186.73 64.92% 0.50 1103.88 14.49 68.04% 3.12%

TABLE III: The number of MAC operations to be simulated
for a test set containing 128 inputs in different DNN architec-
ture.

Name DNN Architecture MAC OPs

LeNet-5 L1-L2 (Conv): (32,32,3)×(14,14,6)
L3-L5 (FC): 400×120×84×10 ≈ 80M

AlexNet
L1-L5 (Conv): (32,32,3)×(7,7,96)×

(3,3,256)×(3,3,384)×(3,3,384)
L6-L9 (FC): 2304×1024×512×10

≈ 6000M

• ML-assisted: uses the trained RFC model as a pre-
filter to identify the critical input patterns, and only
simulates the critical patterns using AVATAR. In our
implemented systolic array, the pipeline depth of a single
MAC unit is one, so our input feature is {x[t], x[t −
1], y golden[t], y golden[t− 1]}.

• DelayNet: this model is from [28] where a fully-
connected DNN with sigmoid activations is deployed to
directly predict the dynamic delay according to the input
vectors. To achieve bit-wise timing error rate estimation,
we modified the number of output neurons to 4 (repre-
senting the delay of the most significant four bits), and
increased the number of neurons in the hidden layer to 50
proportionally to the number of input neurons. Because
the DelayNet can only predict fresh dynamic delay, an
extra aging guardband is also needed. And the extra
guardband is calculated by the same method mentioned
in Section V-A.

The RFC model and DelayNet are trained with the same
training data, which contains 3M input features extracted from
different benchmark DNNs.

A. Accuracy Evaluation

Fig. 10 shows the TERs of the most significant four bits
calculated by different methods. The other bits are ignored
because there is no timing error. The input vectors are ex-
tracted from the second convolution layer in AlexNet. It can
be seen that the TER calculated by ML-assisted flow is very
close to that calculated by Full-Sim. The average error of TER
estimation by ML-flow is only 1.5e-6. Although each path has
a different aging rate, our method covers the top 20% of paths,
so the RFC model still finds most of the inputs that will cause
timing errors after aging. The TERs calculated by DelayNet

are not plotted in Fig. 10 because it is one or two orders of
magnitude different from the exact result. We should note that
the mean absolute percentage error (MAPE) of the predicted
result from DelayNet is reasonable, but predicting an error rate
of less than 1e-4 is beyond the capability of the model. More
specifically, the prediction error of DelayNet is rather large in
predicting the extreme values (delay closed to the critical path
delay), so the TERs calculated by DelayNet are mostly above
1e-4.

Fig. 11 shows the classification accuracy on different bench-
mark DNNs. Similar to the results of TER estimation, the
accuracy calculated by the proposed ML-assisted flow is very
close to that calculated by Full-Sim. The sensitivity of classi-
fication accuracy to the clock period is also well captured by
the proposed flow. While the classification accuracy estimated
by DelayNet is lower than the accurate results because of its
overestimation in layer-wise TERs. The detailed estimation
errors of the proposed flow and DelayNet on different bench-
mark DNNs are listed in Table IV. The result shows that the
estimation errors of the proposed ML-assisted flow are less
than 2%, on both benchmark DNNs.

Meanwhile, the results also indicate that the inherent error
tolerance of systolic array for timing errors is limited, and the
timing errors due to aging can cause significant classification
accuracy loss. For example, without an extra aging guardband,
ten years of aging will reduce the classification accuracy of
LeNet by 34% and will reduce the classification accuracy of
AlexNet by 57%. The reason for the significant decrease in
classification accuracy is mainly due to the fact that in modern
medium-scale or large-scale CNN, one convolution operation
requires hundreds or thousands of MAC operations. Even if
the TER of a single MAC operation is relatively small, the
BER of the output activations can be large. Our observations
also coincide with the previous silicon testing data [17]. More
proactive error prevention or correction strategies and HW/SW
co-optimization are necessary to build robust accelerators.

B. Runtime Evaluation

Table IV shows the speedup of the proposed ML-assisted
flow and DelayNet compared to Full-Sim. Fig. 12 shows the
runtime breakdown of different methods on two benchmark
DNNs. The ML inference and AVATAR are both executed
with 32 CPU threads on a Linux machine with Intel Xeon
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Fig. 10: TERs of different output bit positions for different aging times are calculated by different methods. The input vectors
are extracted from the second convolution layer in AlexNet.
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Fig. 11: Classification accuracy on different benchmark DNNs calculated by different methods.
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Fig. 12: Runtime breakdown of different simulation flow on
benchmark DNNs.

E5-2650 at 2.20GHz and 64 GB RAM. Even with the RFC
model training time, the proposed ML-assisted flow is still 6-
11 × faster than Full-Sim. Because the critical patterns from
the RFC model only account for 5-10% of the original inputs
(the actual percentage is less than 5%). Moreover, the training
process of the RFC model is very fast, which only consumes
63.35s. The speedup of DelayNet is worse than the proposed
ML-assisted flow due to the long training time (6983.77s). If
only care the evaluation phase, the runtime of DelayNet and
the proposed ML-assisted flow are similar. However, as the
scale of CNN increases, the sparsity of the convolution layers
also increases, so the advantages of RFC will be more obvious.

We also demonstrate that the trade-off between accuracy
and runtime can be achieved by adjusting the classification
threshold in the RFC model. The default threshold is 0.5. As
shown in Fig. 13, if the classification threshold is reduced, the
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Fig. 13: Trade-off between accuracy and runtime by adjusting
classification threshold in RFC model.

number of inputs classified as the critical pattern will increase,
and therefore the runtime of AVATAR will also increase.
However, the missed inputs that actually trigger timing errors
are reduced, thus improving the accuracy. Therefore, the
designer can flexibly adjust the threshold value according to
the design scenario.

VII. CONCLUSION

In this paper, we propose AVATAR, an aging- and variation-
aware dynamic timing analyzer, which can calculate the dy-
namic delay with the impact of transistor aging and random
variations. Compared to the conventional corner-based DTA,
AVATAR can accurately estimate the impact of aging and
variation on timing, thus avoiding pessimistic guardband. To
evaluate its effectiveness, we use AVATAR to estimate the
application-specific Vmin/fmax in application-based DVFS de-
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TABLE IV: The accuracy and speedup of the proposed ML-assisted flow and DelayNet.

benchmark ML-assisted DelayNet [28]

error speedup
w/ training

speedup
w/o training error speedup

w/ training
speedup
w/o training

LeNet 0.43% 6.15X 6.36X 19.25% 1.53X 13.67X
AlexNet 1.83% 10.84X 10.99X 25.61% 4.59X 11.66X

sign. The results demonstrate that the additional performance
improvement of the application-based DVFS flow based on
AVATAR can be up to 14% or the additional power-saving
can be up to 20%, compared with the conventional flow.
We also propose an ML-assisted accelerator flow for DNN
accelerator simulation. The proposed flow achieves up to 10×
DTA speedup with an error of less than 2% in inference
accuracy estimation of DNN accelerators.
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