
AVATAR: An Aging- and Variation-Aware Dynamic Timing Analyzer
for Application-based DVAFS

Zuodong Zhang, Zizheng Guo, Yibo Lin∗, Runsheng Wang, Ru Huang
School of Integrated Circuits, Peking University, Beijing, China

ABSTRACT
As the timing guardband continues to increase with the continuous tech-

nology scaling, better-than-worst-case (BTWC) design has gained more and
more attention. BTWC design can improve energy efficiency and/or perfor-
mance by relaxing the conservative static timing constraints and exploiting
the dynamic timing margin. However, to avoid potential reliability hazards,
the existing dynamic timing analysis (DTA) tools have to add extra aging
and variation guardbands, which are estimated under the worst-case corners
of aging and variation. Such guardbanding method introduces unnecessary
margin in timing analysis, thus reducing the performance and efficiency gains
of BTWC designs. Therefore, in this paper, we propose AVATAR, an aging-
and variation-aware dynamic timing analyzer that can perform DTA with the
impact of transistor aging and random process variation. We also propose
an application-based dynamic-voltage-accuracy-frequency-scaling (DVAFS)
design flow based on AVATAR, which can improve energy efficiency by ex-
ploiting both dynamic timing slack (DTS) and the intrinsic error tolerance of
the application. The results show that a 45.8% performance improvement and
68% power savings can be achieved by exploiting the intrinsic error tolerance.
Compared with the conventional flow based on the corner-based DTA, the
additional performance improvement of the proposed flow can be up to 14%
or the additional power-saving can be up to 20%.

1 INTRODUCTION
With the continuous shrinking of CMOS technology nodes, design
margin has become extremely tight due to the reliability and manu-
facturability issues like transistor aging and random process variation
(local variation) [1]. To guarantee the parametric yield and circuit life-
time, designers resort to adding timing guardbands. However, these
guardbands are increasing rapidly with the technology scaling, and
eventually obliterating gains from device scaling [2].

To compensate for the performance loss caused by the aforemen-
tioned issues, better-than-worst-case (BTWC) design is proposed.
BTWC techniques usually go beyond the conservative static timing
constraints, and leverage optimization techniques such as dynamic-
voltage-frequency-scaling (DVFS) [3–5]. Based on the observation
that many emerging applications have nondeterministic specifications
or are robust to noise, some BTWC techniques further explore the
possibility of trading precision, accuracy, and reliability for resource
usage, such as application-level error tolerance and dynamic-voltage-
accuracy-frequency-scaling (DVAFS) [6–8]. All these techniques rely
on the dynamic information obtained from dynamic timing analysis
(DTA).

However, the previous DTA tools for BTWC techniques are usu-
ally performed by delay-annotated gate-level simulation with a post-
processing program to calculate the dynamic timing slack (DTS) [4, 6].

∗Corresponding author: yibolin@pku.edu.cn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9142-9/22/07. . . $15.00
https://doi.org/10.1145/3489517.3530530

Table 1: Comparison among various timing analyzer.

Methods A B C D
Aging-aware STA [10, 11] ✓ × × ×
STA with POCV [12] × ✓ × ×
Delay-annotated DTA [4, 6] × × ✓ ×
Event-based DTA [13] × × ✓ ✓
AVATAR (this work) ✓ ✓ ✓ ✓

(A) Supports gate-level aging analysis.
(B) Supports gate-level random process variation analysis.
(C) Exploits dynamic timing slack to improve performance and
efficiency.
(D) Avoids the pessimism of graph-based assumption.

This method has two shortcomings. First, the delay used in the gate-
level simulation is obtained from graph-based static timing analysis
(STA), which suffers from the pessimistic nature of graph-based analy-
sis [9]. Secondly, it needs extra guardbands for path delay to cover the
worst-case corners of aging and variation (i.e., each cell is in the 3𝜎 lo-
cal process corner with max transistor aging). The pessimism in both
delay calculation and guardbands ultimately lead to an over-designed
system.

To better support the BTWC design methodology, in this paper,
we propose AVATAR, an aging- and variation-aware dynamic timing
analyzer. AVATAR can accurately estimate the timing error rate under
the impact of transistor aging and random variation, thus enabling a
better DVAFS design flow. Table 1 summarizes existing timing analyz-
ers compared with AVATAR. To the best of our knowledge, AVATAR
is the first DTA engine that supports gate-level aging and random
variation models. The major contributions of this work are as follows:

(1) We propose AVATAR, an aging- and variation-aware dynamic
timing analyzer, which can estimate the impact of transistor
aging and random variation on timing analysis. Compared with
the conventional corner-based DTA, AVATAR can accurately
calculate the aged delay and delay variability, which can help
avoid over-design.

(2) We propose an application-based DVAFS flow based on
AVATAR, an optimization technique that enables application-
based dynamic clock/frequency adjustment. The proposed flow
can determine the application-specific 𝑉𝑚𝑖𝑛/𝑓𝑚𝑎𝑥 according to
the distribution of dynamic delays obtained from AVATAR and
the intrinsic error tolerance.

(3) We demonstrate that exploiting intrinsic error tolerance of
the application to accept timing errors can boost the perfor-
mance up to 45.8% or reduce power up to 68% in error-tolerant
applications.

(4) The results also show that, compared with the flow based on the
corner-based DTA, the additional performance improvement of
the proposed application-based DVAFS flow based on AVATAR
can be up to 14% or the additional power-saving can be up to
20%.

https://doi.org/10.1145/3489517.3530530

2 4 6 8 10
0%

5%

10%

15%

20%

25%

A
g

in
g

-i
n

d
u

c
e

d
 D

d
e

la
y

 Vdd = 0.8 V

 Vdd = 0.6 V

 Vdd = 0.4 V

Time (year)

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

2%

4%

6%

8%

10%

D
e

la
y

 v
a

ri
a

b
il
it

y
 s

/m
Vdd (V)

 FF global corner

 TT global corner

 SS global corner

(b)

Figure 1: (a) Increase in FO4 delay due to transistor aging effect
under different 𝑉𝑑𝑑 . (b) FO4 variability normalized to the value
at nominal 𝑉𝑑𝑑 . The data is obtained from HSPICE simulation
with a commercial 16/14 nm modelcard.

The rest of this paper is organized as follows. Section 2 introduces
the background of reliability issues in timing analysis and application-
based DVFS. Section 3 presents details of the algorithm. Section 4
demonstrated the experimental results of our algorithm. Finally, Sec-
tion 5 concludes the paper.

2 PRELIMINARIES
2.1 Reliability and Manufacturability Issues in

Timing Analysis
As CMOS technology shrinks to nanoscale, transistor aging and pro-
cess variation become more and more significant, making timing
closure and signoff increasingly challenging [12]. Transistor aging
effect increases the gate delay and transition time, which increases
the possibility of timing violations over time. Random variation needs
an additional design margin to ensure the yield, especially in near-
threshold voltage (NTV). Fig. 1 shows the impact of transistor aging
and random variation on the delay of Fan-out-of-4 (FO4) inverter,
which is routinely used to optimize critical paths. It shows that the
aging effect is the major reliability concern in the nominal voltage,
while the random variation becomes more and more pronounced with
the voltage decreasing.

To counteract the impact of transistor aging and random variation,
designers typically employ a guardband when checking the timing [2].
However, the aging and variation guardbands are commonly calcu-
lated in the worst-case corner and increase rapidly due to device scal-
ing. As a result, the impact of guardbanding on performance, power,
and area (PPA) has been increasing, and eventually obliterating PPA
benefits from device scaling. Therefore, aging- and variation-aware
design flow is urgently needed.

2.2 Dynamic Timing Analysis and
Application-based DVFS

Application/instruction-based DVFS is widely adopted to improve
the energy efficiency or performance in embedded system [3–5]. It
is based on the observation that an instruction executed on an em-
bedded processor may not utilize all the functionalities. Therefore,
there may exist a timing slack between the most critical path reported
from STA and the longest path triggered by the instructions. Distin-
guish from previous static timing slack (STS), such timing slack is
called DTS. The presence of DTS means that for the specific applica-
tion/instruction, the𝑉𝑑𝑑 or 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒 could have been smaller. There-
fore, using application/instruction-specific 𝑉𝑚𝑖𝑛/𝑓𝑚𝑎𝑥 instead of the
fixed𝑉𝑑𝑑 /𝑓𝑚𝑎𝑥 can increase the energy efficiency/performance. At the
same time, many emerging applications are robust to computational

LVF library

Build timing graph

& levelization

Final
cycle ?

Input events

generation

Events propagation

Path reporting

End

Aging-aware

gate models

Zero-delay gate-

level simulation

Static probabilities

& toggle rates

Netlist Input

Vectors
Workload

Aging&POCV Analysis Event-based DTA

Figure 2: The proposed aging- and variation-aware DTA flow
of AVATAR.

errors, which means that the application-based voltage/frequency ad-
justment can be more aggressive for these error-tolerant applications.
Hence DVAFS is proposed to trade accuracy for more performance
improvements and/or power savings.

All these techniques rely on DTA to determine the
application/instruction-specific 𝑉𝑚𝑖𝑛/𝑓𝑚𝑎𝑥 . Existing DTA tools
either leverage delay-annotated gate-level simulation with a
post-processing program to calculate DTS [4, 6] or event-based DTA
algorithms considering propagation of signal transition events [13].
However, none of these tools consider the impact of transistor aging
and random variation on timing. Thus the results obtained from
these tools need extra aging and variation guardbands to cover the
worst-case aging and variation conditions. Such pessimism in DTA
hinders the further improvement of application-based DVAFS.

3 ALGORITHM
In this section, we will explain the implementation details of AVATAR,
and show how AVATAR enables better application-based DVAFS de-
sign flow. The overall task flow of AVATAR is shown in Fig. 2. It
contains two main parts: gate-level aging and variation analysis and
event-based DTA.

3.1 Gate-level Aging and Variation Model
Characterization

To enable the aging and variation analysis, we first build the gate-level
aging model and variation library. We utilize the method proposed
in [10] to build the gate-level aging model. The basic idea is to use the
first-order Taylor expansion to model the aging effect on the delay
and transition time (tr):

𝑑𝑒𝑙𝑎𝑦𝑎𝑔𝑒𝑑 = 𝑑𝑒𝑙𝑎𝑦𝑓 𝑟𝑒𝑠ℎ +
∑︁

𝑎𝑖 × Δ𝑉𝑡ℎ𝑖 (1)

𝑡𝑟𝑎𝑔𝑒𝑑 = 𝑡𝑟 𝑓 𝑟𝑒𝑠ℎ +
∑︁

𝑏𝑖 × Δ𝑉𝑡ℎ𝑖 (2)

where the sensitivity coefficients 𝑎𝑖 , 𝑏𝑖 vary with different input slews
and output loads, so the model uses the first-order linear model to fit
the dependency.

𝑎𝑖 = 𝑎𝑖0 + 𝛼𝑎𝑖 × 𝑠𝑙𝑒𝑤 + 𝛽𝑎𝑖 × 𝑙𝑜𝑎𝑑 (3)

A

B

CI

CO

S(load = 10)U1

Event on A: {at.μ =0.2, at.

=0.02, slew=0.1, rising}

Event on B: {at.μ =0.6, at.

=0.025, slew=0.08, falling}

Arrive times of all input events T(U1) = {0.2(A), 0.6(B)}

Event on S: {at.μ=0.323,

at.=0.044, slew=0.187, rising}

Event on S: {at.μ=0.721,

at.=0.034, slew=0.074, falling}

1

atB=0.6

atA=0.2

𝝁𝒇𝒓𝒆𝒔𝒉
𝒅𝒆𝒍𝒂𝒚

𝑨 𝒕𝒐 𝑺, 𝒔𝒍𝒆𝒘: 𝟎. 𝟏, 𝒍𝒐𝒂𝒅: 𝟏𝟎 = 𝑳𝑼𝑻𝒅𝒆𝒍𝒂𝒚 𝟎. 𝟏, 𝟏𝟎 = 𝟎. 𝟏

𝝁𝒂𝒈𝒆𝒅
𝒅𝒆𝒍𝒂𝒚

𝑨 𝒕𝒐 𝑺, 𝒔𝒍𝒆𝒘: 𝟎. 𝟏, 𝒍𝒐𝒂𝒅: 𝟏𝟎 = 𝟎. 𝟏 + ∑𝒂𝒊 ∗ ∆𝑽𝒕𝒉= 𝟎. 𝟏𝟐𝟑

𝝈𝒇𝒓𝒆𝒔𝒉
𝒅𝒆𝒍𝒂𝒚

𝑨 𝒕𝒐 𝑺, 𝒔𝒍𝒆𝒘: 𝟎. 𝟏, 𝒍𝒐𝒂𝒅: 𝟏𝟎 = 𝑳𝑼𝑻𝒐𝒄𝒗(𝟎. 𝟏, 𝟏𝟎) = 𝟎. 𝟎𝟒

𝒕𝒓𝒇𝒓𝒆𝒔𝒉 𝑨 𝒕𝒐 𝑺, 𝒔𝒍𝒆𝒘: 𝟎. 𝟏, 𝒍𝒐𝒂𝒅: 𝟏𝟎 = 𝑳𝑼𝑻𝒕𝒓(𝟎. 𝟏, 𝟏𝟎) = 𝟎. 𝟏𝟓

𝒕𝒓𝒂𝒈𝒆𝒅 𝑨 𝒕𝒐 𝑺, 𝒔𝒍𝒆𝒘: 𝟎. 𝟏, 𝒍𝒐𝒂𝒅: 𝟏𝟎 = 𝟎. 𝟏𝟓 + ∑𝒃𝒊 ∗ ∆𝑽𝒕𝒉 = 𝟎. 𝟏𝟖𝟕

Figure 3: An example of the event propagation for cell FA.

Since negative bias temperature instability (NBTI) dominates the
transistor aging in digital circuits [14], the model only considers 𝑉𝑡ℎ
degradation of PMOS.

In the built gate-level aging model, the inputs are: the timing arc
queried, the input slew, the output capacitance, the Δ𝑉𝑡ℎ of each tran-
sistor, and working conditions(i.e., supply voltage, and temperature);
the outputs of the model are the corresponding aged cell delay and
transition time.

For random variation analysis, we adopt parametric on-chip varia-
tion (POCV) analysis [12]. POCV can be represented with the liberty
variation format (LVF), a widely used industry standard. LVF models
capture the delay impact of variation at multiple slew and load combi-
nations in look-up tables. To reduce the characterization complexity,
we model aging and random variation as two independent effects [15]
and only consider the effect of aging on the means value of cell delay
and tr. It should be noted that the aging-aware model and LVF library
characterization requires lots of SPICE simulations, but it is done only
once for each technology.

3.2 Workload Analysis
The aim of workload analysis is to simulate a realistic working sce-
nario and provide the necessary information for aging analysis. As
mentioned before, the extra inputs of the aging-aware model are
the Δ𝑉𝑡ℎ of each transistor. Therefore, the final results of workload
analysis are the Δ𝑉𝑡ℎ of each transistor in the circuit.

The workload analysis is implemented in two steps: in the first
step, we use the zero-delay gate-level simulation to obtain the static
probability and toggle rate of each internal net; then, we employ the
cell-level analytical model [10] and device-level aging model to calcu-
late the Δ𝑉𝑡ℎ of each transistor. It should be noted that the zero-delay
gate-level simulation can be replaced by the delay-annotated gate-
level simulation or the event-based DTA, which will be more accurate,
but the runtime will also increase significantly. After obtaining the
Δ𝑉𝑡ℎ of each transistor, the DTA engine can then query the aged cell
delay and tr of any gate by the built aging-aware model.

3.3 Event-based DTA
AVATAR performs DTA based on the cycle-by-cycle event generation
and propagation. In the event propagation algorithm, AVATAR uses
the aforementioned gate-level aging model to calculate the aged cell
delay. And to enable random variation analysis, deterministic delays

are replaced with a distribution of delays, modeled with two param-
eters, the mean value (𝜇) and the stand deviation (𝜎). Therefore, the
dynamic delay calculated by AVATAR is also a distribution rather than
a fixed value.

In the event-based DTA, a digital switching of a pin is defined as
an event. Each event contains at least four attributes: signal type, slew,
and the 𝜇 and 𝜎 of arrival time (at). Unlike the conventional delay-
annotated DTA, in the event-based DTA, each event records its own
slew, and the cell delay is calculated by the slew of the input event.
Therefore, there is no need to merge the input slews of multi-input
cells, and the path delay calculation is more accurate.

As shown in Fig. 2, the first step of the event-based DTA is build-
ing the timing graph and levelizing the graph to build level-by-level
dependencies of the gate for events propagation.

The next step is the cycle-by-cycle timing analysis, which contains
three main sub-steps in each cycle: input event generation, event
propagation, and path reporting. In the first step, AVATAR reads the
input vector of the current cycle and compares the value of each bit
with the value of the previous cycle. A changed value indicates that
an event occurs on the specific input pin.

Then, AVATAR propagates the input events to the timing endpoints
(inputs of flip-flops or output ports). Propagation algorithms are di-
vided into propagation through a net and propagation through a gate.
Propagation through a net only increases the at of the events by net
delay. While each gate will generate new events according to the input
events.

Algorithm 1 presents the gate propagation process. We first build
a sorted list of all arrival times of input events (lines 1-3). Then, we
simulate the logic behavior of the gate and get the output value in
chronological order (lines 5-6). A changed output value indicates an
output event in the corresponding output pin. For each output event,
we calculate the 𝜇 and 𝜎 of the corresponding cell delay and the output
tr by LVF library and the aging model (lines 8-10). Then, we calculate
the 𝜇 and 𝜎 of the output event at by cell delay and the corresponding
input event (lines 11-14).

Fig. 3 gives an example to better describe the event propagation
algorithm and the timing calculation. There are two input events for
the full adder (FA) cell U1 in the current cycle, so the list of time is
{0.2, 0.6}. We first simulate the logic of FA at these two time points.
It can be found that the value of the output pin S changes at each
moment, which means that each input event triggers an output event
on the output pin S. Then, we calculate the corresponding aged cell
delay, delay variation and aged output tr. Finally, we build the output
event and add it to the events list of pin S.

In the last step, AVATAR checks all the events of the endpoints,
and reports the at (𝜇 and 𝜎) of the last events as the dynamic delay
distribution. After reporting all endpoints, the algorithm clears all
events and only reserves the state of pins as the initial state for the
next cycle. This operation ensures AVATAR to have no additional
memory overhead.

3.4 Parallel Acceleration
To accelerate multi-cycle simulation, we adopt cycle parallelism in
event-based DTA. We divided the cycles to be simulated into n equal
parts and assign them to n different threads for execution. It is noted
that, there is a m-cycle overlap between different parts, and m is
equal to the pipeline depth, because the circuit takes m cycles to
be in the state that it is supposed to be in. Using cycle parallelism
avoids complex netlist splitting algorithms, and threads are executed
independently, which results in better acceleration.

Algorithm 1: Propagate events through the gate.
Input: gate gi , event list of input pins
Output: event list of output pins

1 build a list of time 𝑇 (𝑔𝑖) ;
2 𝑇 (𝑔𝑖) ← 𝑔𝑒𝑡_𝑖𝑛𝑝𝑢𝑡_𝑒𝑣𝑒𝑛𝑡_𝑎𝑟𝑟𝑖𝑣𝑒_𝑡𝑖𝑚𝑒 (gi) ;
3 sort 𝑇 (𝑔𝑖) and ensure that there are no two input events with

the same 𝑎𝑡 ;
4 for all time 𝑡𝑖 ∈ 𝑇 (𝑔𝑖) do
5 find the corresponding input event 𝑒𝑣𝑒𝑛𝑡_𝑖𝑛;
6 get the states of input pins at time 𝑡𝑖 , and calculate the

output value;
7 for all pin 𝑝𝑖 ∈ 𝑃𝐼𝑁𝑜𝑢𝑡 whose state changed do

// calculate cell delay and tr

8 𝜇
𝑑𝑒𝑙𝑎𝑦

𝑎𝑔𝑒𝑑
= 𝐿𝑈𝑇 (𝑒𝑣𝑒𝑛𝑡_𝑖𝑛.𝑠𝑙𝑒𝑤, 𝑙𝑜𝑎𝑑) +

𝑎𝑔𝑖𝑛𝑔_𝑚𝑜𝑑𝑒𝑙 (𝑒𝑣𝑒𝑛𝑡_𝑖𝑛.𝑠𝑙𝑒𝑤, 𝑙𝑜𝑎𝑑,Δ𝑉𝑡ℎ);
9 𝜎

𝑑𝑒𝑙𝑎𝑦

𝑓 𝑟𝑒𝑠ℎ
= 𝐿𝑈𝑇 (𝑒𝑣𝑒𝑛𝑡_𝑖𝑛.𝑠𝑙𝑒𝑤, 𝑙𝑜𝑎𝑑);

10 𝑡𝑟𝑎𝑔𝑒𝑑 = 𝐿𝑈𝑇 (𝑒𝑣𝑒𝑛𝑡_𝑖𝑛.𝑠𝑙𝑒𝑤, 𝑙𝑜𝑎𝑑) +
𝑎𝑔𝑖𝑛𝑔_𝑚𝑜𝑑𝑒𝑙 (𝑒𝑣𝑒𝑛𝑡_𝑖𝑛.𝑠𝑙𝑒𝑤, 𝑙𝑜𝑎𝑑,Δ𝑉𝑡ℎ);
// build a new event

11 build a output event 𝑒𝑣𝑒𝑛𝑡_𝑜𝑢𝑡 ;
12 𝑒𝑣𝑒𝑛𝑡_𝑜𝑢𝑡 .𝑎𝑡 .𝜇 = 𝑒𝑣𝑒𝑛𝑡_𝑖𝑛.𝑎𝑡 .𝜇 + 𝜇𝑑𝑒𝑙𝑎𝑦

𝑎𝑔𝑒𝑑
;

13 𝑒𝑣𝑒𝑛𝑡_𝑜𝑢𝑡 .𝑎𝑡 .𝜎 = 𝑆𝑞𝑟𝑡 ((𝑒𝑣𝑒𝑛𝑡_𝑖𝑛.𝑎𝑡 .𝜎)2 + (𝜎𝑑𝑒𝑙𝑎𝑦
𝑓 𝑟𝑒𝑠ℎ

)2);
14 𝑒𝑣𝑒𝑛𝑡_𝑜𝑢𝑡 .𝑠𝑙𝑒𝑤 = 𝑡𝑟𝑎𝑔𝑒𝑑 ;
15 add 𝑒𝑣𝑒𝑛𝑡_𝑜𝑢𝑡 to the events list of 𝑝𝑖 ;

Synthesis

Compilation

RTL Simulation

AVATAR

Input vectors of FUs

Netlists

DTS & TER

Program Binaries

LVF

Library

Aging-aware

Gate Models

Application-specific

𝑉𝑚𝑖𝑛/𝑓𝑚𝑎𝑥

Benchmark

Applications

RISC-V core

TER Tolerance

Analysis

Figure 4: The proposed application-based DVAFS design flow
based on AVATAR.

3.5 Application-based DVAFS
We target application-based DVAFS as one of the use case of AVATAR.
The DVAFS design flow is shown in Fig. 4. The key idea is to use
AVATAR to determine the application-specific𝑉𝑚𝑖𝑛/𝑓𝑚𝑎𝑥 as the guide
for the dynamic voltage/frequency adjustment at runtime. Moreover,
previous work has demonstrated that many computational-intensive
applications usually feature an intrinsic error-resilience property [16].
Therefore, we extend the conventional DVFS to DVAFS, in which
performance and energy efficiency are further improved by allowing
a small percentage of computational errors.

Firstly, we compile the applications to binary files, and execute
them in the RTL simulation of the target processor. This step is to

0.3 0.4 0.5 0.6 0.7 0.8

5%

10%

15%

20%

25%

T
im

in
g

 G
u

a
rd

b
a

n
d

Voltage (V)

 Variation Guardband

 Aging Guardband

 Total Guardband

Figure 5: The required aging guardband and variation guard-
band at different voltages.

obtain the input vectors of the functional units (FUs). It should be
noted that AVATAR can perform the DTA for the full design, but we
only consider the dynamic delay of FUs because previous work [4]
shows that the maximum dynamic delays occur mainly in FUs, and
the timing error occurred in FUs can be tolerant in some applications.

Then, we synthesize the RTL codes into the gate-level netlists, and
use AVATAR to perform aging- and variation-aware DTA for the FUs.
AVATAR will report the aged dynamic delay and delay variability per
cycle for FUs running the applications. Thus the timing error rate
(TER) can be estimated according to the delay distribution and toggle
rate. Finally, according to the results of AVATAR and the inherent
error tolerance of the application, we can determine the 𝑉𝑚𝑖𝑛/𝑓𝑚𝑎𝑥

for each application.

4 EXPERIMENTAL RESULTS
We implemented AVATAR in C++ and conducted all the experiments
on a Linux machine with Intel Xeon E5-2650 at 2.20GHz and 64 GB
RAM. AVATAR and the conventional event-based DTA are both exe-
cuted in parallel with 32 threads. An open RISC-V core RI5CY and a
set of embedded application benchmarks [17] are used to validate the
proposed application-based DVAFS. The RISC-V core is synthesized
with the open-source Nangate 15nm standard cell library [18], using
Synopsys Design Compiler. Static timing analysis and power analy-
sis are performed with Synopsys Primetime. Siliconsmart is used to
generate the LVF libraries at each 𝑉𝑑𝑑 between 0.8V and 0.4V at 0.2V
interval with a commercial 16/14nm FinFET modelcard. Gate-level
aging models are built with an NBTI model from [14]. Our baseline for
the results is the processor operating at nominal voltage and frequency
(833MHz and 0.8V).

We use the following two methods to determine the application-
specific 𝑉𝑚𝑖𝑛/𝑓𝑚𝑎𝑥 :

(1) Using the corner-based DTA with extra aging guardband and
variation guardband in dynamic delay calculation [3, 4]. The fi-
nal dynamic delay is calculated as𝑑𝑒𝑙𝑎𝑦∗(1+𝑡𝑜𝑡𝑎𝑙_𝑔𝑢𝑎𝑟𝑑𝑏𝑎𝑛𝑑).
We assume the aging guardband is 15% [10] and the random
variation guardband is 5% [19] at nominal 𝑉𝑑𝑑 . Then, we use
FO4 delay as the representative cell to characterize the trend of
guardband at different 𝑉𝑑𝑑 [20]. The result is shown in Fig. 5.
As the voltage decreases, the total guardband decreases first
due to the aging effect, but as the voltage decreases to the near-
threshold region, the rapid rise of variation guardband leads to
the increase of the total guardband.

(2) Using AVATAR. The results of AVATAR already include the
impacts of aging and variation, so no extra guardband is needed.
The final delay is calculated as 𝜇 (𝑑𝑒𝑙𝑎𝑦) + 3 ∗ 𝜎 (𝑑𝑒𝑙𝑎𝑦).

Table 2: Performance improvement from application-based DVAFS based on the corner-based DTA and AVATAR. The processor
operates at the nominal 𝑉𝑑𝑑 of 0.8V.

Benchmark [17]
Corner-based DTA [3, 4] AVATAR (this work)

Delay (ps) Max Freq.
(MHz)

Impro.
(vs STA)

Delay (ps) Max Freq.
(MHz)

Impro.
(vs STA)

Additional Benefits
(vs corner-based DTA)𝜇 𝜎

SHA 1054.95 948 13.75% 957.65 7.65 1020 22.38% 8.63%
AES_CBC 1132.18 883 5.99% 1028.41 7.76 951 14.10% 8.11%

FIR 1092.71 915 9.82% 991.29 7.56 986 18.35% 8.53%
BubbleSort 772.28 1290 55.38% 701.84 7.94 1380 65.36% 9.98%

Motion_Detection 1043.48 958 15.00% 945.27 7.56 1030 23.97% 8.97%
CNN 1151.86 868 4.18% 1045.53 7.69 936 12.30% 8.12%

Convolution 1151.78 868 4.19% 1045.70 7.69 936 12.28% 8.09%
2d_Filter 1068.33 936 12.33% 927.48 7.37 1050 26.37% 14.04%

MatrixMult 1092.05 916 9.89% 991.29 6.75 989 18.63% 8.74%
DCT 852.47 1170 40.77% 768.55 6.72 1270 52.15% 11.38%

To avoid the randomness of the input data from affecting the results,
we simulate at least 200k cycles and up to 2M cycles per application.
By comparing the performance and energy efficiency of these two
methods, we will show howAVATAR enables better DVAFS at runtime.

4.1 Performance and Power Improvement
Table 2 shows the performance improvement by adopting the
performance-first DVAFS strategy based on the corner-based DTA and
AVATAR. The table shows that different applications can expose differ-
ent maximum dynamic delays, depending on which process features
are triggered. For example, the dynamic delays of CNN, AES_CBC
are close to the critical path delay given by STA, because these ap-
plications can trigger the critical path of the multiplier. While the
dynamic delays of BubbleSort, DCT are much less than the clock cycle,
because the instructions of BubbleSort only trigger the comparator
in ALU. Although DCT uses the hardware multiplier, the inputs are
8-bit images, which cannot trigger the high bits of the multiplier.

The table shows that the flow based on the corner-based DTA can
improve the performance by an average of 17.13%, while the flow based
on AVATAR can improve the performance by an average of 26.59%.
The additional improvement of AVATAR over the corner-based DTA
varies in different applications. Overall, the additional performance
improvement of AVATAR is 8% to 14%. This is because that different
applications trigger different hardware paths, and corner-based DTA
uses the fixed guardband to all paths. In practice, however, each path
has a different delay degradation and variation, depending on the
circuit topology and workload.

Table 3 shows the power saving by adopting the power-first DVAFS
strategy based on the corner-based DTA and AVATAR. On average, the
flow based-on the corner-based DTA can save the power by 38%, while
the flow based on AVATAR can save the power by 50.57%. Compared
with the corner-based DTA, the additional power-saving of AVATAR
can be up to 20%. It should be noted that the minimal application-
specific𝑉𝑚𝑖𝑛 is 0.46V, which is greater than theminimum energy point
(about 0.2V). Therefore, the flow based on AVATAR also improves
energy efficiency.

4.2 Improvement in error-tolerant Applications
Fig. 6 shows the histogram of the dynamic delay for the RISC-V
core running CNN application. The dynamic delay is calculated by
AVATAR. It can be seen that although CNN can trigger some long
paths, the trigger rate are rather small. This means that a significant
amount of power and performance needs to be sacrificed to prevent

700 800 900 1000 1100 1200
0

1000

2000

3000

4000

5000

C
y
c
le

s

Delay (ps)

STS=0DTS=0
DTS<0

TER<1e-4

DTS<0

TER<1e-3

Figure 6: Histogram of dynamic delays per cycle for the RISC-V
core running CNN application.

small probability of error. Therefore, the minimal clock cycle can be
much smaller if we relax the constraint of accuracy.

The previous work shows that LeNet-5 can tolerate error rates of
1e-4 to 1e-3 without affecting the network accuracy [21]. Although
different CNN structures and databases have different intrinsic error
tolerance, in this paper, we use 1e-3 as an upper bound of TER to
demonstrate the effectiveness of DVAFS. The results are shown in
Fig. 7. Allowing timing errors to occur can leading to a 45.8% perfor-
mance improvement or 68% power saving. For some CNN structures
or databases with less error tolerance, using 1e-4 as the upper limit of
TER can still achieve a 31.6% performance gain or 58.2% power saving.
The results show that DVAFS is a promising optimization technique
for all error-tolerant applications.

4.3 Runtime Evaluation
In our application-based evaluation, when executed in parallel with
32 threads, AVATAR took 2993.45s to simulate 1M cycles for a FU
containing 4400 gates, taking about twice the time of the corner-based
DTA. The increased time is mainly for aging analysis, because the
device-level aging model contains lots of exponential and logarithmic
operations. We should note that AVATAR has been developed for
CPU execution, and the runtime can be improved by up to 10 times if
further utilizing graphic processing units (GPUs) [22].

5 CONCLUSION
In this paper, we present AVATAR, an aging- and variation-aware
dynamic timing analyzer, which can calculate the dynamic circuit

Table 3: Power saving from application-based DVAFS based on the corner-based DTA and AVATAR. The processor operates at the
nominal frequency of 833MHz.

Benchmark [17]
Corner-based DTA [3, 4] AVATAR (this work)

Min Vdd
(V) Delay (ps) Power

Savings
Min Vdd

(V)
Delay (ps) Power

Savings
Additional Benefits

(vs corner-based DTA)𝜇 𝜎

SHA 0.66 1177.19 38.00% 0.60 1144.04 11.44 50.73% 12.73%
AES_CBC 0.72 1191.76 23.25% 0.64 1165.70 10.45 42.41% 19.16%

FIR 0.68 1193.89 33.32% 0.62 1152.21 10.72 46.65% 13.33%
BubbleSort 0.48 1185.59 71.01% 0.46 1111.08 20.18 73.76% 2.75%

Motion_Detection 0.64 1193.09 42.41% 0.60 1130.30 11.30 50.73% 8.32%
CNN 0.74 1193.56 17.87% 0.66 1157.36 9.88 38.00% 20.13%

Convolution 0.74 1193.81 17.87% 0.66 1157.58 9.88 38.00% 20.13%
2d_Filter 0.66 1190.69 38.00% 0.60 1155.70 10.61 50.73% 12.73%

MatrixMult 0.68 1192.24 33.32% 0.62 1146.01 9.48 46.65% 13.33%
DCT 0.52 1186.73 64.92% 0.50 1103.88 14.49 68.04% 3.12%

0%

10%

20%

30%

40%

 TER = 0

 TER < 1e-4

 TER < 1e-3

F
re

q
u

e
n

c
y

 I
m

p
ro

v
m

e
n

t

(a)

30%

40%

50%

60%

70% TER = 0

 TER < 1e-4

 TER < 1e-3

P
o

w
e

r
S

a
v

in
g

(b)

Figure 7: (a) The performance gains and (b) the power saving
by allowing small number of timing errors. The benchmark
application is CNN.

delay with the impact of transistor aging and random variations. We
evaluate AVATAR in application-based DVAFS design flow, which
leverages the application-specific 𝑉𝑚𝑖𝑛/𝑓𝑚𝑎𝑥 to obtain performance
or efficiency gains. The results demonstrate that exploiting intrinsic
error tolerance to accept timing errors can improve performance by
up to 45.8% or increase the energy efficiency by up to 68% for error-
tolerant applications. The results also demonstrate that the additional
performance improvement of the application-based DVAFS flow based
on AVATAR can be up to 14% or the additional power-saving can be
up to 20%, compared with the conventional flow. Our future work
includes accelerating the aging model characterization and the event-
based DTA, and leveraging AVATAR to enable other optimization
design flows.

ACKNOWLEDGEMENTS
This work was supported in part by the National Key R&D Program
(2020YFB2205500), NSFC (62125401, 62141404, 62034007) and the 111
Project (B18001).

REFERENCES
[1] R. Huang, X. Jiang, S. Guo, P. Ren, P. Hao, Z. Yu, Z. Zhang, Y. Wang, and R. Wang,

“Variability-and reliability-aware design for 16/14nm and beyond technology,” in
Proc. IEDM, 2017, pp. 12.4.1–12.4.4.

[2] A. Rahimi, L. Benini, and R. K. Gupta, “Variability mitigation in nanometer cmos
integrated systems: A survey of techniques from circuits to software,” Proceedings of

the IEEE, vol. 104, no. 7, pp. 1410–1448, 2016.
[3] H. Cherupalli, R. Kumar, and J. Sartori, “Exploiting dynamic timing slack for energy

efficiency in ultra-low-power embedded systems,” in Proc. ISCA, 2016, p. 671–681.
[4] J. Constantin, L. Wang, G. Karakonstantis, A. Chattopadhyay, and A. Burg, “Exploit-

ing dynamic timing margins in microprocessors for frequency-over-scaling with
instruction-based clock adjustment,” in Proc. DATE, 2015, pp. 381–386.

[5] T. Jia, R. Joseph, and J. Gu, “19.4 an adaptive clock management scheme exploiting
instruction-based dynamic timing slack for a general-purpose graphics processor
unit with deep pipeline and out-of-order execution,” in Proc. ISSCC, 2019, pp. 318–320.

[6] I. Tsiokanos, L. Mukhanov, and G. Karakonstantis, “Low-power variation-aware
cores based on dynamic data-dependent bitwidth truncation,” in Proc. DATE, 2019,
pp. 698–703.

[7] O. Assare and R. Gupta, “Accurate estimation of program error rate for timing-
speculative processors,” in Proc. DAC, 2019.

[8] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Dvafs: Trading computa-
tional accuracy for energy through dynamic-voltage-accuracy-frequency-scaling,”
in Proc. DATE, 2017, pp. 488–493.

[9] J. Bhasker and R. Chadha, Static timing analysis for nanometer designs: A practical
approach. Springer Science & Business Media, 2009.

[10] Z. Zhang, R. Wang, X. Shen, D. Wu, J. Zhang, Z. Zhang, J. Wang, and R. Huang,
“Aging-aware gate-level modeling for circuit reliability analysis,” IEEE TED, vol. 68,
no. 9, pp. 4201–4207, 2021.

[11] H. Amrouch, B. Khaleghi, A. Gerstlauer, and J. Henkel, “Reliability-aware design to
suppress aging,” in Proc. DAC, 2016, pp. 1–6.

[12] A. B. Kahng, “New game, new goal posts: A recent history of timing closure,” in
Proc. DAC, 2015, pp. 1–6.

[13] Z. Zhang, Z. Guo, Y. Lin, R. Wang, and R. Huang, “Eventtimer: Fast and accurate
event-based dynamic timing analysis,” in Proc. DATE, 2022.

[14] S. Guo, R. Wang, Z. Yu, P. Hao, P. Ren, Y. Wang, S. Liao, C. Huang, T. Guo, A. Chen,
J. Xie, and R. Huang, “Towards reliability-aware circuit design in nanoscale finfet
technology: — new-generation aging model and circuit reliability simulator,” in
Proc. ICCAD, 2017, pp. 780–785.

[15] B. Kaczer, T. Grasser, P. J. Roussel, J. Franco, R. Degraeve, L.-A. Ragnarsson, E. Simoen,
G. Groeseneken, and H. Reisinger, “Origin of nbti variability in deeply scaled pfets,”
in Proc. IRPS, 2010, pp. 26–32.

[16] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis and character-
ization of inherent application resilience for approximate computing,” in Proc. DAC,
2013.

[17] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi, E. Flamand,
F. K. Gürkaynak, and L. Benini, “Near-threshold risc-v core with dsp extensions for
scalable iot endpoint devices,” IEEE TVLSI, vol. 25, no. 10, pp. 2700–2713, 2017.

[18] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech, and J. Michelsen,
“Open cell library in 15nm freepdk technology,” in Proc. ISQED. New York, NY,
USA: Association for Computing Machinery, 2015, p. 171–178.

[19] X. Jiang, X. Wang, R. Wang, B. Cheng, A. Asenov, and R. Huang, “Predictive compact
modeling of random variations in finfet technology for 16/14nm node and beyond,”
in Proc. IEDM, 2015, pp. 28.3.1–28.3.4.

[20] M. Alioto, G. Scotti, and A. Trifiletti, “A novel framework to estimate the path delay
variability on the back of an envelope via the fan-out-of-4 metric,” IEEE TCAS I,
vol. 64, no. 8, pp. 2073–2085, 2017.

[21] X. Jiao, M. Luo, J. H. Lin, and R. K. Gupta, “An assessment of vulnerability of hardware
neural networks to dynamic voltage and temperature variations,” in Proc. ICCAD,
2017, pp. 945–950.

[22] Z. Guo, T.-W. Huang, and Y. Lin, “Heterocppr: Accelerating common path pessimism
removal with heterogeneous cpu-gpu parallelism,” in Proc. ICCAD, 2021, pp. 1–9.

