
Heterogeneous Static Timing Analysis with
Advanced Delay Calculator

Zizheng Guo1,2, Tsung-Wei Huang4, Zhou Jin5, Cheng Zhuo6, Yibo Lin1,2,3∗, Runsheng Wang1,2,3, Ru Huang1,2,3
1School of Integrated Circuits, Peking University 2Institute of Electronic Design Automation, Peking University

3Beijing Advanced Innovation Center for Integrated Circuits
4The University of Wisconsin at Madison 5China University of Petroleum-Beijing 6Zhejiang University

Abstract—Static timing analysis (STA) in advanced technol-
ogy nodes encounter many new challenges in analysis accuracy
and speed efficiency. To accurately model complex interconnect
networks, existing timers have leveraged reduced-order models
with effective capacitance to design advanced delay calculation
algorithms. However, the iterative nature of these algorithms makes
them extremely time-consuming to use in a timer, significantly
limiting their capability in many timing-driven applications. To
overcome this challenge, we propose a novel GPU-accelerated delay
calculator that targets Arnoldi-based model order reduction with
an effective capacitance algorithm. We design efficient numerical
kernels for batched nodal analysis model construction, LU decom-
position, Krylov subspace calculation, eigenvalue decomposition,
and Newton-Raphson iteration. Compared with two industrial
standard timers, PrimeTime and OpenSTA, we achieve a strong
correlation with up to 7.27× and 14.03× speed-up, respectively.

I. INTRODUCTION

Static timing analysis (STA) is a critical step in the overall
design flow because it validate the timing behaviors of a circuit
designs [1]. To accurately track the timing behaviors, several
delay models have been proposed over the last decades. Among
various delay models, existing timers have widely used Elmore
delay model and non-linear delay model (NLDM) to calculate
the net delay and gate delay, respectively. While Elmore and
NLDM are advantageous in their computational efficiency, they
cannot accurately model delays in advanced nodes (e.g., beyond
45nm). Specifically, Elmore model applies only a first-order
approximation to the interconnect delay. The approximation is
limited to simple tree-based RC structures and cannot handle
complex lumped RC networks. Likewise, NLDM assumes a
simple sum of total capacitance in an RC network. This es-
timation can overestimate the delay and slew of a gate due to
resistive shielding effect.

To address this problem, industrial standard timers, such
as PrimeTime and OpenSTA [2], incorporate advanced delay
calculators using different model-order-reduction (MOR) tech-
niques and effective capacitance formulas. For instance, the
open-source timer, OpenSTA, incorporates Arnoldi algorithm to
calculate interconnect delays with a custom capacitance formula.
Despite more accurate results, the iterative process of Arnoldi
algorithm incurs significant runtime cost for solving many
different linear systems, as shown in Figure 1. For example,

*Corresponding author: Yibo Lin (yibolin@pku.edu.cn). This work is sup-
ported in part by the Natural Science Foundation of Beijing, China (Grant No.
Z230002), NSFC (Grant No. 62204265), and National Science Foundation in
the US under grants CCF-2349141, CCF-2349582, OAC-2349143, TI-2349144,
and the 111 project (B18001).

25.5%

10.8%

MRE (w.r.t. PrimeTime)

70.8 s

180.6 sRuntime

Elmore
(1T)

81.1 s

Arnoldi
(1T)

Arnoldi
(16T)

7.1 s

Arnoldi
(Ours GPU)

Arnoldi
(Ours)

7.5%

Elmore Arnoldi
(OpenSTA)

Fig. 1: Arnoldi delay models have significantly less mean rela-
tive error (MRE) in delay calculation in advanced nodes com-
pared to Elmore models. However, it introduces significant run-
time overhead and challenges in parallelization. Data collected
by analyzing a million-gate industrial design netcard [13].

switching from Elmore to Arnoldi reduces the delay prediction
error from 25.5% to 10.8% on a large design under 14nm
process. However, it slows down OpenSTA by 2.55×. Even with
multi-threading, OpenSTA can only speed up the process up to
only 2.23×, and the results largely saturated at 16 cores [3], [4],
[5], [6], [7], [8], [9]. This significant runtime cost has largely
limited the use of Arnoldi algorithm in many timing-driven
optimization flows.

To achieve better runtime scalability, CPU-GPU heteroge-
neous computing techniques have been utilized to solve timing
analysis tasks [10], [11], [12]. While these works are limited
to Elmore model, their methods have inspired us to accelerate
Arnoldi algorithm using CPU-GPU heterogeneous parallelism.
Specifically, Arnoldi algorithm involves many linear algebra
operations, such as dense/sparse matrix multiplication and de-
composition, that can significantly benefit from the massive
parallelism of GPU. However, designing a GPU-accelerated
Arnoldi algorithm is very challenging for three reasons: (1)
The parallelism inside timing analysis is constrained by the
topology of the circuit graph, making it challenging to design
efficient parallel decomposition strategies. (2) The amount of
matrix algebras vary by the degrees of different nets, which
introduces severe workload imbalance between different GPU
threads. (3) Moreover, the iterative procedures for effective
capacitance calculation lead to great divergence in computation
patterns which are hard to predict and optimize.

To overcome the above challenges, we propose a novel
GPU-accelerated delay calculator targeting Arnoldi model order
reduction and effective capacitance algorithm. We summarize
our technical contributions as follows:

1) We build a new GPU-accelerated delay calculator for
advanced interconnect modeling. We combine Arnoldi
model order reduction and effective capacitance compu-
tation to an accurate, efficient delay calculator.

2) We design powerful GPU kernels to accelerate all nu-
merical tasks in advanced interconnect modeling. The
tasks include batched nodal analysis construction, LU
factorization, Krylov subspace calculation, eigenvalue de-
composition, and Newton-Raphson iterations.

3) We integrate our delay calculator into a fully GPU-
accelerated STA engine and achieve up to 7.27× speed-up
over PrimeTime and 14.03× speed-up over OpenSTA on
large circuit designs. The accuracy results of our timer are
strongly correlated to that of PrimeTime.

The rest of this paper is organized as follows. Section II
introduces the problem formulation of STA and delay calcula-
tion. Section III presents details of our GPU-accelerated delay
calculator. Section IV demonstrated the experimental results.
Finally, Section V concludes the paper.

II. PRELIMINARIES

STA engines regard a circuit as a directed acyclic graph
(DAG). As shown in Figure 2, this DAG represents the di-
rections of signal transmission between pins and arcs. There
are two kinds of timing arcs, net arcs and cell arcs representing
interconnect and logic cells (i.e., gates), respectively. Both kinds
of arcs introduce delays during the trip of a signal. An STA
engine first computes the delays of all net arcs and cell arcs
according to physical information (delay calculation), and then
extracts the worst negative slack (WNS), total negative slack
(TNS), and a list of timing-critical paths according to timing
constraints (path searching).

The accuracy and speed of an STA engine are directly
determined by the models used in delay calculation. The basic
problem instance of delay calculation involves a logic cell driv-
ing a series of downstream cells through a metal interconnect
between them. Both the distribution of lumped resistors and
capacitors (RC) in the interconnect and the behavior of the
driving cell affect the delays of net arcs and cell arcs as a
whole. Moreover, the delays are also affected by the upstream
voltage transition time (i.e., slew). The central task of delay
calculation in an STA engine is to propagate the slew throughout
the DAG and compute the arc delays under best-case and worst-
case scenarios.

To characterize the behavior of driving cells, the non-linear
delay model (NLDM) is used to generate a set of look-up tables
(LUTs). Each LUT item gives the cell delay with a lumped
capacitive load attached to the cell output pin. In real scenarios,
the capacitor is replaced with a complex RC interconnect. The
capacitances far from the driving cell will have a weak effect on
cell delay due to the presence of resistances along the way. Mod-
ern signoff-level STA engines like [2] incorporate complex and
iterative processes to model the interaction between cells and RC
interconnects. These processes are difficult to implement due to
their black-box nature, and even more difficult to accelerate due
to their inherent complexity in numerical algorithms compared
to simple models like Elmore delay and total capacitances [13],
[14].

25ps

38ps6ps

60ps

net arc

cell arc

Elmore delay
 Complex RC

Arnoldi model

Total load caps
 Resistive Shielding
Effective capsD

Clk

Q

Fig. 2: A circuit graph and two types of timing arcs.

Flatten Liberty, SPEF, & Netlist

Levelize Netlist

Arnoldi ROM Calculation
(Rise/Fall * Min/Max)

Build MNA System

Symbolic LU Factor

Numerical LU Factor

Krylov Subspace Calc

Slew Propagation
(Min/Max)

Driving Res Calc

Eigenvalue Decomp.

NR Solve Driver
Waveform & Ceff

NR Solve Delay & Slew

Calculate WNS & TNS

Net 1 Net N
…

GPU-Parallel across nets Propagate level by level

GPU-
Parallel

across arcs
in one level

Fig. 3: Overview of computation tasks in our heterogeneous STA
engine. The boxes in green indicate GPU-accelerated tasks. The
flattening and levelization algorithms follow [10].

III. ALGORITHMS

Figure 3 shows a complete task flow of our proposed hetero-
geneous STA engine with Arnoldi delay calculator. To maximize
the parallelism and solve Challenge (1) in Section I, we divide
the delay calculation task into two main steps: Arnoldi reduced-
order model (ROM) calculation and slew propagation, with
different parallelization strategies. The Arnoldi ROM calculation
step consists of 4 substeps: batched modified nodal analysis
(MNA) system construction, symbolic and numerical LU fac-
torization, and Krylov subspace calculation. We parallelize their
computation across different nets. The slew propagation step
is also divided into 4 substeps: driving resistance calculation,
eigenvalue decomposition, Newton-Raphson (NR) iterations for
driver waveform and effective capacitance, and finally the delay
and slew calculation. They are parallelized within every logic
level of the STA graph. Following subsections describe the
details of each step, our engineering effort orchestrating such a
system to improve delay calculation accuracy, and our different
acceleration strategies for the various numerical algorithms and
computation patterns involved.

A. Batched Arnoldi ROM Calculation

Model order reduction is at the core of advanced delay
calculation. It serves to accurately analyze the behavior of large
RC interconnects with small approximate linear systems. In this
work, we use the coordinate-transformed Arnoldi algorithm [15]
as our model order reduction engine because of its guaranteed
stability in the resulting systems. For simplicity, we use exam-
ples of a single net to explain the algorithms, but it is batched
when considering all nets.

1) Building a MNA System: Our first task is to represent
an RC interconnect with a linear system using modified nodal
analysis (MNA). Specifically, the resulting system has the form

Cv′ +Gv = e1 · u, (1)

where we assume the interconnect has n nodes, the first pin is
the driver, v = v(t) ∈ Rn is the voltage waveform of all pins,
and u = u(t) is the external input. C and G are sparse n × n
matrices representing nodal capacitances and conductances. For
our RC interconnect case, C and G are both real symmetric.

Our first task, as presented in Algorithm 1, is to construct C
and G matrices according to SPICE stamps (lines 7–9) using
the parasitic annotations. We store the resulting C and G in
compressed sparse column (CSC) format for later steps. The
careful use of radix sort and in-place CSC nonzeros construction
makes it easy to port to GPUs.

Algorithm 1: Batched MNA construction.

1 GPU Parallel for all nets do
Input: Parasitic elements array elem .

2 Initialize CSC arrays Gnnz, Gp, Gv, Cnnz, Cp, Cv;
3 Accumulate number of nonzeros on each row;
4 Do in-place prefix sum on Gnnz and Cnnz;
5 Radix sort elem by (a, b) for R or C interconnect

a↔ b and a < b (first by b, then stable sort by a);
6 Append nonzeros for all elements in order:
7 For resistance R between a↔ b, insert element

Ga,b-=1/R, Ga,a, Gb,b+=1/R;
8 For coupling capacitance C between a↔ b, insert

Ca,b,-=C, Ca,a, Cb,b+=C;
9 For grounded capacitance C on a, insert Ca,a+=C;

10 Append transpose to the CSC arrays;

2) Sparse LU (LDL) Factorization: The reduced-order sys-
tem computation involves solving the equation Gx = y many
times. Calculating the inverse of G is discouraged in practice
because it destroys its sparsity. Instead, we perform a sparse
LU factorization on G similar to a SPICE simulator. Thanks to
the symmetric property of G, we can write it as: G = LDLT.
A sparse LU factorization involves two stages: symbolic and
numerical factorization. Symbolic factorization computes the
locations of nonzero elements (i.e., fill-ins) in L and numerical
factorization determines the concrete values of them.

Sparse LU factorization of very large (n ≥ 105) matrix sys-
tems has been accelerated using GPUs to design heterogeneous
SPICE simulators [16], [17], [18]. On the contrary, we deal
with millions of matrices with diverse sizes (10 ≤ n ≤ 4, 000)

Numerical Kernel

Symbolic Kernel
1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

(a) Symbolic factorization

X X X
X X X

X X X X X X
X X X

X X X
X X X X X X

X X X X X X X
X X X X X

X X X X X X X

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

(b) Numerical factorization

CUDA Block 1

CUDA Block 2

CUDA Block 1
for Net 1

CUDA Block 2
for Net 2

Net 1 Net 2 ….

T1 T2 ….

Parallel prefix sum to allocate memory

Fig. 4: Illustration of different parallelization strategies for
batched symbolic and numerical LU decomposition.

which leads to imbalanced workload and insufficient parallelism
(Challenge (2) as stated in Section I).

As a result, we incorporate different parallelization strate-
gies for the two stages in our STA engine, as presented in
Figure 4. Symbolic factorization is mostly sequential, so we
assign one GPU thread for every net (i.e., every matrix G).
After symbolic factorization, we collect the number of nonzeros
through a parallel prefix sum for numerical memory allocation.
Numerical factorization is computation intensive and involves
vector operations, so we assign one GPU block (256 threads)
for every net. Our strategy turns out to be a good combination
of both intra-task and inter-task parallelism.

3) Krylov Subspace through Arnoldi Process: We compute
the Krylov subspace of given interconnect through Algorithm 1
in [15]. We fix the order to be 4 observing this is a good trade-
off between speed and accuracy. The results are two matrices
Hq ∈ R4×4 and Uq ∈ R4×n. During the calculation on GPU,
we assign a block of threads to compute the algebraic operations
involved in [15], including:

1) Solve Gx = y with the sparse decomposition G = LDLT,
using parallel forward substitution and backward substi-
tution.

2) Calculate the sparse matrix-vector product y = Cx.
3) Calculate the dot product of two vectors in Rn.

During the calculation, we need block-wise reduction opera-
tions. In practice, we implement the operations using CUDA
shared memory

B. Batched Slew Propagation

To model the interaction between nets and driving cells,
and propagate the signal transition time, we follow the method
proposed by Dartu, Menezes, and Pileggi [19] (DMP method)

input
slew

Driving
Cell

RC Interconnect

Ceff

Rd

Interconnect
t0

t0+Δt

Driver Model Receiver Model

Fig. 5: Modeling the interaction between a driver cell and a
receiver RC interconnect. A total of 4 parameters are included:
Rd, t0,∆t, and Ceff.

and re-derived their method to our reduced-order model and
heterogeneous framework. Figure 5 shows the basic idea of the
DMP method. On the cell side, the interconnect is regarded
as an effective capacitance Ceff. On the net side, the cell is
modeled as a ramp shape driver voltage waveform (t0, t0+∆t)
and a driving resistance Rd. Our goal is to solve the parameters
Rd, t0,∆t, and Ceff involved between cell drivers and inter-
connects. For simplicity, we use examples of a single cell arc
to explain the algorithms, but it is batched when considering all
cell arcs in every logic level.

1) Driving Resistance: We use the following Equation (2) to
approximate the driving resistance.

Rd =
slew

totalcap · log thresslew2

thresslew1

(2)

It is an adaptation of the Equation (22) in [19] and is derived
from an exponential fit of the output waveform between two
slew threshold points. The slew in Equation (2) comes from
an initial NLDM table lookup using input slew and total
capacitance.

2) Eigenvalue Decomposition for Poles and Residues: By ob-
taining the driving resistance, we update the interconnect system
and obtain a new Hq ∈ R4×4. The eigenvalue decomposition
of Hq will then give the exact solution of this reduced-order
transient system. Specifically, the transfer function between
driver and all nodes is written as

X(s)

u(s)
≈ Uq(I −Hqs)

−1e1

√
∥G−1e1/Rd∥2C , (3)

which corresponds to Equation (14) in [15]. Substituting an
eigenvalue decomposition Hq = MΛMT, we get

X(s)

u(s)
≈ UqM(I − Λs)−1MTe1

√
∥G−1e1/Rd∥2C , (4)

where (I − Λs)−1 is a trivial inverse of a diagonal matrix.
Because we have a pure RC interconnect, Hq is guaranteed to

be tridiagonal symmetric. As a result, we use the classic Jaco-
bian iteration method to find the eigenvalues and eigenvectors.
We represent the step-response voltage waveform solution at one

node as a set of poles pi and residues ri (i = 1, 2, 3, 4). The
waveform in Laplace domain and time domain are respectively,

L(v(t)) =

4∑
i=1

ripi
s(pi − s)

, (5)

v(t) = 1−
4∑

i=1

rie
pit. (6)

We use Algorithm 2 to calculate the poles and residues, which
implements Equation (4). On GPU, we assign 1 thread to
calculate the poles (line 1) of every net, and a block of threads
to calculate the residues (line 3) of all pins in the net.

Algorithm 2: Compute poles and residues of one net.

Input: Hq ∈ R4×4 and Uq ∈ R4×n

Input: Hq = MΛMT where Λ = diag{λ1, ..., λ4}
1 for i = 1, 2, 3, 4 do
2 pi ← −1/λi;
3 GPU Parallel for j = 1, 2, ..., n do
4 for i = 1, 2, 3, 4 do
5 r

(j)
i ← 0;

6 for k = 1, 2, 3, 4 do
7 r

(j)
i ← r

(j)
i + Uq[k, j]M [k, i];

8 r
(j)
i ← r

(j)
i ·M [1, i];

9 Normalize r
(j)
1,2,3,4 so that they sum to 1;

3) NR Iteration for Driver Parameters: Computing the driver
parameters Ceff,∆t, t0 is the central task in delay calculation.
Because the delay of nets and driving cells have subtle influence
on each other, driver parameters are solved iteratively. To
minimize the threading divergence (Challenge (3) in Section I),
we need an algorithm with fast convergence rate. An ideal set of
parameters should satisfy the following Equation (7)1, adapted
from Equation (12) in [19]. y(delay(Ceff), t0,∆t) = 0.5,

y(delay(Ceff)− 1
2 · slew(Ceff), t0,∆t) = 0.2,

QCeff
(∆t) = QROM(∆t).

(7)

Basically, Equation (7) says that the waveform at the root
node under Rd should match the delay and first threshold points
as specified in NLDM library. Furthermore, the current drawn by
the effective capacitance Ceff should be the same as the actual
interconnect during the driver ramp ∆t. The currents QCeff

(∆t)
and QROM(∆t) are derived respectively in Equations (9) and (11).

vCeff
(t) =

1

∆t

∫ t

0

1− e
− t1

RdCeff dt1 (8)

QCeff
(∆t) =

∫ ∆t

0

1

Rd

(
t

∆t
− vCeff

(t)

)
dt

= Ceff +
C2
eff

∆t

(
−1 + e

− ∆t
CeffRd

)
Rd

(9)

1In practice, 0.5 and 0.2 in Equation (7) should be replaced with thresdelay
and thresslew1 defined in Liberty library.

vROM(t) =
1

∆t

∫ t

0

1−
4∑

i=1

rie
pit1dt1 (10)

QROM(∆t) =

∫ ∆t

0

1

Rd

(
t

∆t
− vROM(t)

)
dt

=
1

Rd

4∑
i=1

ri
−1 + epi∆t − pi∆t

p2i∆t

(11)

To model the voltage waveform under a ramp input (t0, t0 +
∆t) (see Figure 5) instead of a step input, we perform an
integration on Equation (6). We also need the gradient of
waveform points over the time point and the ramp duration.
Algorithm 3 calculates a voltage at time t on the waveform
given ramp input (0,∆t), as well as the gradient over time t
and ramp duration ∆t.

Algorithm 3: Waveform gradient (1 GPU thread).

1 def calc waveform grad(t,∆t, pi, ri):
2 if t < 0 then
3 return y=0, dy/dt=0, dy/d∆t=0;
4 t1 ← max(0, t−∆t);

5 y ← 1
∆t

(
t− t1 −

∑4
i=1

ri
pi
(etpi − et1pi)

)
;

6 dy/d∆t← −y/∆t;

7 dy/dt← 1
∆t

(
1−

∑4
i=1 rie

tpi

)
;

8 if t ≥ ∆t then
9 g ← 1

∆t

(
1−

∑4
i=1 rie

(t−∆t)pi

)
;

10 dy/d∆t←dy/d∆t+ g;
11 dy/dt←dy/dt− g;
12 return y, dy/dt, dy/d∆t;

Given the waveform gradient and currents, we solve Equa-
tion (7) using a two-level approach, as presented in Algorithm 4.
In the inner loop (lines 7–12), we solve the first two waveform-
related equalities using Newton-Raphson iteration. In the outer
loop, we solve Ceff. By setting QCeff

(∆t) = QROM(∆t) (see
Equations (9) and (11)) and discarding terms above third order,
we solve a plain quadratic equation analytically (lines 13–14).
All parameters usually converge within 10–30 inner iterations.

4) NR Iteration for Interconnect Delay and Slew: Finally
after solving the driving parameters, we have determined the
voltage waveform. Similar to Algorithm 4 lines 7–12, we use
NR iteration to find the time points at 50%, 20%, and 80%
voltage and compute the delay and slew according to their
definitions. This is the last step in one level of delay calculation
and slew propagation. By repeatedly propagating slew on the
levelized circuit graph, we solve the delays of all timing arcs.

IV. EXPERIMENTAL RESULTS

We implemented our heterogeneous STA engine using Rust,
C++, and CUDA. To evaluate the accuracy and efficiency on
advanced nodes, we use the TAU 2015 contest benchmarks [13]
and re-synthesized all benchmark netlists under an industrial
14nm technology. The sizes of all netlists are listed in Table I.
The largest designs leon2 and netcard have millions of

Algorithm 4: Batched driving parameter solver.

1 GPU Parallel for all cell arcs in current level do
2 Ceff ← total capacitance;
3 ∆t← initial slew/(thresslew2 − thresslew1);
4 t0 ← initial delay+ log(thresdelay)RdCeff −∆t/2;
5 while Ceff not converged do
6 delay , slew ← lookup NLDM using Ceff;
7 while t0,∆t not converged do
8 f1, df1/dt, df1/d∆t←

calc waveform grad(delay − t0, ∆t) - 0.5;
9 f2, df2/dt, df2/d∆t←

calc waveform grad(delay − slew/2− t0,
∆t) - 0.2;

10 δ ←
(

df1/d∆t −df1/dt
df2/d∆t −df2/dt

)−1 (
f1
f2

)
;

11 ∆t← ∆t− δ0;
12 t0 ← t0 − δ1;
13 quad ← 1

∆tRd

(
−1 + e−∆t/(CeffRd)

)
;

14 Ceff ←
−1+
√

1+4QROM(∆t)quad

2quad ;

TABLE I: Benchmark statistics.

Benchmark #Gates #Nets #Pins #RC Nodes

aes core 22938 23199 66221 413058
b19 iccad 255278 255300 776320 4416480
des perf ispd 138878 139112 371587 2095933
edit dist ispd 147650 150212 416609 2555873
fft ispd 38158 39184 116139 631491
leon2 iccad 1616369 1616984 4178874 22450936
leon3mp iccad 1247725 1247979 3267993 17647115
matrix mult ispd 164040 167242 475186 2752675
mgc edit dist iccad 161692 164254 444693 2431266
mgc matrix mult iccad 171282 174484 489670 2710343
netcard iccad 1496719 1498555 3901343 21023425
pci bridge32 ispd 40790 40950 108172 577083
vga lcd iccad 259067 259152 662179 3539206

logic gates, and their most complex nets include thousands of
RC nodes. We made a fair comparison with two commercial
STA engines supporting signoff-accurate delay calculation, Syn-
opsys PrimeTime and OpenSTA [2]. Both baseline STA engines
are configured to use Arnoldi-based net modeling and effective
capacitances. PrimeTime is regarded as the golden result. We
conducted all experiments on an Ubuntu Linux machine with 32
CPU cores on 2.9 GHz, 64 GB RAM, and one Nvidia RTX 3090
GPU. We measured the average wall-clock runtime for the entire
report_timing calls of all 3 STA engines. We measured
the delay calculation accuracy by comparing the standard delay
format (SDF) output of the STA engines, which include the
delay of all net arcs and cell arcs.

Table II gives a comprehensive efficiency and accuracy com-
parison between our timer, PrimeTime, and OpenSTA.

1) Accuracy: Regarding both mean absolute error (MAE)
and the R2 score on delay calculation, our timer outper-
forms OpenSTA and shows a significantly better match to
the golden PrimeTime. We have reached an average R2 score
of 0.985, better than OpenSTA’s 0.973. Meanwhile, OpenSTA
gives inferior R2 matches (0.92 to 0.93) on some designs
like mgc_edit_dist and mgc_matrix_mult whereas our

TABLE II: Overall efficiency and accuracy comparison between PrimeTime, OpenSTA, and our timer.

Benchmark
PrimeTime (16C) OpenSTA (16C) Ours (16C + GPU)

Runtime RTR MAE R2 Runtime RTR MAE R2 Runtime RTR MAE R2

aes core 670.62 1.62 0.00 1.000 1330.98 3.22 0.18 0.995 413.64 1.00 0.24 0.988
b19 iccad 8596.88 2.67 0.00 1.000 16580.22 5.15 10.02 0.977 3218.93 1.00 4.84 0.985
des perf ispd 3061.67 2.86 0.00 1.000 7153.86 6.68 0.65 0.981 1071.39 1.00 0.54 0.993
edit dist ispd 4514.95 2.43 0.00 1.000 12071.41 6.50 1.05 0.978 1857.63 1.00 1.05 0.984
fft ispd 1188.18 1.33 0.00 1.000 2858.55 3.19 0.68 0.979 895.49 1.00 0.91 0.973
leon2 iccad 52428.27 7.27 0.00 1.000 101163.31 14.03 6.01 0.963 7208.56 1.00 1.76 0.993
leon3mp iccad 41380.85 5.87 0.00 1.000 79411.68 11.27 10.00 0.976 7043.75 1.00 4.77 0.985
matrix mult ispd 3889.05 1.91 0.00 1.000 10868.02 5.32 0.90 0.983 2041.16 1.00 1.04 0.976
mgc edit dist iccad 6205.73 2.27 0.00 1.000 13904.51 5.09 3.58 0.921 2729.06 1.00 2.40 0.988
mgc matrix mult iccad 6508.40 1.98 0.00 1.000 12526.86 3.81 2.70 0.932 3289.62 1.00 2.40 0.969
netcard iccad 43520.28 6.14 0.00 1.000 81761.80 11.53 9.00 0.984 7093.04 1.00 5.78 0.985
pci bridge32 ispd 1078.99 1.85 0.00 1.000 2160.30 3.70 1.34 0.992 584.43 1.00 0.66 0.998
vga lcd iccad 7441.11 2.99 0.00 1.000 12831.15 5.16 6.41 0.988 2485.26 1.00 4.00 0.984

Average 13883.46 3.17 0.00 1.000 27278.66 6.51 4.04 0.973 3071.69 1.00 2.34 0.985

Runtime: in ms. RTR: runtime ratio over ours. MAE: mean absolute error in ps over PrimeTime. R2: the R2 regression score over PrimeTime.

timer gives more stable delay calculation results. Our timer
has greatly reduced the MAE of delay calculation, especially
on large and complex designs. For example, OpenSTA has an
average of 6.01ps error compared to PrimeTime on leon2,
whereas our timer have reduced the error to 1.76ps. Our average
MAE among all designs is 2.34ps, which is 42% smaller than
OpenSTA’s 4.04ps. These accuracy results prove the correctness
and effectiveness of our proposed Arnoldi delay calculation
and effective capacitance iteration framework, and show that
the resulting accuracy of our timer is comparable to leading
commercial tools.

2) Efficiency: We configured both PrimeTime and OpenSTA
to use 16 CPU threads during analysis, and our timer uses
16 CPU threads and 1 GPU. Our runtime has outperformed
both PrimeTime and OpenSTA among all benchmarks we have
tested. Considering all large and small designs, we are 3.17×
faster than PrimeTime and 6.51× faster than OpenSTA on
average. We achieve larger speed-up on larger designs. For
example, on the largest design leon2, we are 7.27× faster
than PrimeTime and 14.03× faster than OpenSTA, completing
the analysis using only 7.2 seconds instead of minutes. These
runtime results prove the efficiency of our heterogeneous accel-
eration and scheduling for the numerical algorithms in model
order reduction and effective capacitance calculation.

V. CONCLUSION

This paper proposes the first GPU-accelerated delay calcula-
tor for advanced delay modeling. We have built a comprehensive
timing analysis system with comparable accuracy to commercial
tools like PrimeTime and OpenSTA. We achieve up to 7.27×
speed-up over PrimeTime and 14.03× over OpenSTA given
the maximum CPU parallelism. Our STA engine provides even
closer results to PrimeTime compared with OpenSTA.

REFERENCES

[1] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs:
A Practical Approach, 1st ed. Springer Publishing Company, Incorpo-
rated, 2009.

[2] “OpenSTA,” https://github.com/The-OpenROAD-Project/OpenSTA.
[3] T.-W. Huang and M. D. Wong, “OpenTimer: A high-performance timing

analysis tool,” in Proc. ICCAD. IEEE, 2015, pp. 895–902.

[4] T. Huang, G. Guo, C. Lin, and M. D. F. Wong, “OpenTimer v2: A New
Parallel Incremental Timing Analysis Engine,” IEEE TCAD, vol. 40, no. 4,
pp. 776–789, 2021.

[5] Z. Guo, T.-W. Huang, and Y. Lin, “A provably good and practically
efficient algorithm for common path pessimism removal in large designs,”
in Proc. DAC. ACM, 2021.

[6] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin, “Taskflow: A Lightweight
Parallel and Heterogeneous Task Graph Computing System,” in IEEE
TPDS, vol. 33, no. 6, 2022, pp. 1303–1320.

[7] T.-W. Huang, C.-X. Lin, G. Guo, and M. D. F. Wong, “Cpp-Taskflow: Fast
Task-based Parallel Programming using Modern C++,” in Proc. IPDPS.
IEEE, 2019, pp. 974–983.

[8] K.-M. Lai, T.-W. Huang, and T.-Y. Ho, “A general cache framework for
efficient generation of timing critical paths,” in Proc. DAC, 2019.

[9] G. Guo, T.-W. Huang, C.-X. Lin, and M. Wong, “A general cache
framework for efficient generation of timing critical paths,” in Proc. DAC,
2020.

[10] Z. Guo, T.-W. Huang, and Y. Lin, “Gpu-accelerated static timing analysis,”
in Proc. ICCAD. ACM, 2020.

[11] G. Guo, T.-W. Huang, Y. Lin, Z. Guo, S. Yellapragada, and M. D. F.
Wong, “A gpu-accelerated framework for path-based timing analysis,”
IEEE TCAD, pp. 1–1, 2023.

[12] Z. Guo, T.-W. Huang, and Y. Lin, “HeteroCPPR: Accelerating common
path pessimism removal with heterogeneous cpu-gpu parallelism,” in
Proc. ICCAD. ACM, 2021.

[13] J. Hu, G. Schaeffer, and V. Garg, “TAU 2015 contest on incremental timing
analysis,” in Proc. ICCAD. IEEE, 2015, pp. 882–889.

[14] D. Garyfallou, S. Simoglou, N. Sketopoulos, C. Antoniadis, C. P. Sotiriou,
N. Evmorfopoulos, and G. Stamoulis, “Gate delay estimation with library
compatible current source models and effective capacitance,” IEEE TVLSI,
vol. 29, no. 5, pp. 962–972, 2021.

[15] L. Miguel Silveira, M. Kamon, I. Elfadel, and J. White, “A coordinate-
transformed Arnoldi algorithm for generating guaranteed stable reduced-
order models of RLC circuits,” in Proc. ICCAD, Nov. 1996, pp. 288–294.

[16] J. Zhao, Y. Wen, Y. Luo, Z. Jin, W. Liu, and Z. Zhou, “SFLU:
Synchronization-Free Sparse LU Factorization for Fast Circuit Simulation
on GPUs,” in Proc. DAC. San Francisco, CA, USA: IEEE, 2021, pp.
37–42.

[17] S. Peng and S. X.-D. Tan, “GLU3.0: Fast GPU-based Parallel Sparse LU
Factorization for Circuit Simulation,” IEEE Design & Test, vol. 37, no. 3,
pp. 78–90, 2020.

[18] X. Chen, L. Ren, Y. Wang, and H. Yang, “GPU-Accelerated Sparse LU
Factorization for Circuit Simulation with Performance Modeling,” IEEE
Transactions on Parallel and Distributed Systems (TPDS), vol. 26, no. 3,
pp. 786–795, 2015.

[19] F. Dartu, N. Menezes, and L. Pileggi, “Performance computation for
precharacterized CMOS gates with RC loads,” IEEE TCAD, vol. 15, no. 5,
pp. 544–553, 1996.

